IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i4p2631-2657d35417.html
   My bibliography  Save this article

A Wide-Area Measurement Systems-Based Adaptive Strategy for Controlled Islanding in Bulk Power Systems

Author

Listed:
  • Honglei Song

    (School of Electrical Engineering, Beijing Jiao Tong University, Beijing 100044, China)

  • Junyong Wu

    (School of Electrical Engineering, Beijing Jiao Tong University, Beijing 100044, China)

  • Kui Wu

    (Department of Computer Science, University of Victoria, Victoria, BC V8P 5C2, Canada)

Abstract

Controlled islanding is the last countermeasure for a bulk power system when it suffers from severe cascading contingencies. The objective of controlled islanding is to maintain the stability of each island and to keep the total loss of loads of the whole system to a minimum. This paper presents a novel integrated wide-area measurement systems (WAMS)-based adaptive controlled islanding strategy, which depends on the dynamic post-fault trajectories under different failure modes. We first utilize an improved Laplacian eigenmap algorithm (ILEA) to identify the coherent generators and use the slow coherency grouping algorithm to guarantee coherent stability within an island. Using the identification result, we then define the minimum coherent generator virtual nodes to reduce the searching space in a graph and utilize the k-way partitioning (KWP) algorithm to obtain a preliminary partition of the simplified graph. Based on the preliminary partition, we consider the direction of power flow and propose a variable neighborhood heuristic searching algorithm to search the optimal separation surfaces so that the net imbalanced power of islands is minimized. Finally, the bidirectional power flow tracing algorithm and PQ decomposition power flow analysis are utilized to determine the corrective controls within each island. The test results with the New England 39-bus system and the IEEE 118-bus system show that the proposed integrated controlled islanding strategy can automatically adapt to different fault modes through generator coherency identification and effectively group the different coherent generators into different islands.

Suggested Citation

  • Honglei Song & Junyong Wu & Kui Wu, 2014. "A Wide-Area Measurement Systems-Based Adaptive Strategy for Controlled Islanding in Bulk Power Systems," Energies, MDPI, vol. 7(4), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2631-2657:d:35417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/4/2631/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/4/2631/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenzhi Lin & Yuxuan Zhao & Shengyuan Liu & Fushuan Wen & Yi Ding & Li Yang & Chang Han & Hao Zhou & Hongwei Wu, 2018. "A New Indicator of Transient Stability for Controlled Islanding of Power Systems: Critical Islanding Time," Energies, MDPI, vol. 11(11), pages 1-10, November.
    2. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    3. Pau Casals-Torrens & Juan A. Martinez-Velasco & Alexandre Serrano-Fontova & Ricard Bosch, 2020. "Assessment of Unintentional Islanding Operations in Distribution Networks with Large Induction Motors," Energies, MDPI, vol. 13(2), pages 1-25, January.
    4. Yi Tang & Feng Li & Chenyi Zheng & Qi Wang & Yingjun Wu, 2018. "PMU Measurement-Based Intelligent Strategy for Power System Controlled Islanding," Energies, MDPI, vol. 11(1), pages 1-15, January.
    5. Cuicui Jin & Weidong Li & Liu Liu & Ping Li & Xian Wu, 2019. "A Coherency Identification Method of Active Frequency Response Control Based on Support Vector Clustering for Bulk Power System," Energies, MDPI, vol. 12(16), pages 1-16, August.
    6. Tao Jin & Fuliang Chu & Cong Ling & Daniel Legrand Mon Nzongo, 2015. "A Robust WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology," Energies, MDPI, vol. 8(4), pages 1-19, April.
    7. Fei Tang & Chufei Xiao & Xin Gao & Yifan Zhang & Nianchun Du & Benxi Hu, 2020. "Research on Transmission Network Expansion Planning Considering Splitting Control," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    8. Antans Sauhats & Andrejs Utans & Dmitrijs Antonovs & Andrejs Svalovs, 2017. "Angle Control-Based Multi-Terminal Out-of-Step Protection System," Energies, MDPI, vol. 10(3), pages 1-16, March.
    9. Hongbo Shao & Yubin Mao & Yongmin Liu & Wanxun Liu & Sipei Sun & Peng Jia & Fufeng Miao & Li Yang & Chang Han & Bo Zhang, 2018. "A Three-Stage Procedure for Controlled Islanding to Prevent Wide-Area Blackouts," Energies, MDPI, vol. 11(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2631-2657:d:35417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.