IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v4y2011i9p1301-1320d13737.html
   My bibliography  Save this article

Classification of Fundamental Ferroresonance, Single Phase-to-Ground and Wire Breakage Over-Voltages in Isolated Neutral Networks

Author

Listed:
  • Lin Chen

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China)

  • Qing Yang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China)

  • Jing Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China)

  • Wenxia Sima

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China)

  • Tao Yuan

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing, China)

Abstract

This paper proposes a simple and effective method for classification of fundamental ferroresonance, single phase-to-ground and wire breakage over-voltages. In isolated neutral networks, power frequency over-voltages due to ferroresonance, single phase-to-ground and wire breakage may exist for a long time, and have very highly similar voltage features. If the improper suppression operation is applied due to incorrect identification, the accident is likely to worsen further. In this paper, the voltage and current features of these faults are analyzed, and a new effective classification criterion for fundamental ferroresonance and single phase-to-ground based on zero sequence current is proposed. A comprehensive identification method based on voltage, current and zero sequence current features is proposed, which is feasible and promising for real applications.

Suggested Citation

  • Lin Chen & Qing Yang & Jing Wang & Wenxia Sima & Tao Yuan, 2011. "Classification of Fundamental Ferroresonance, Single Phase-to-Ground and Wire Breakage Over-Voltages in Isolated Neutral Networks," Energies, MDPI, vol. 4(9), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:4:y:2011:i:9:p:1301-1320:d:13737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/4/9/1301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/4/9/1301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Wang & Qing Yang & Wenxia Sima & Tao Yuan & Markus Zahn, 2011. "A Smart Online Over-Voltage Monitoring and Identification System," Energies, MDPI, vol. 4(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo Granizo & Francisco R. Blánquez & Emilio Rebollo & Carlos A. Platero, 2015. "A Novel Ground Fault Non-Directional Selective Protection Method for Ungrounded Distribution Networks," Energies, MDPI, vol. 8(2), pages 1-26, February.
    2. Qing Yang & Bo Zhang & Jiaquan Ran & Song Chen & Yanxiao He & Jian Sun, 2017. "Measurement of Line-to-Ground Capacitance in Distribution Network Considering Magnetizing Impedance’s Frequency Characteristic," Energies, MDPI, vol. 10(4), pages 1-14, April.
    3. Hongwen Liu & Ke Wang & Qing Yang & Lu Yin & Jisheng Huang, 2019. "On-Line Detection of Voltage Transformer Insulation Defects Using the Low-Frequency Oscillation Amplitude and Duration of a Zero Sequence Voltage," Energies, MDPI, vol. 12(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Yang & Jing Wang & Wenxia Sima & Lin Chen & Tao Yuan, 2011. "Mixed Over-Voltage Decomposition Using Atomic Decompositions Based on a Damped Sinusoids Atom Dictionary," Energies, MDPI, vol. 4(9), pages 1-18, September.
    2. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.
    3. Xingliang Jiang & Yunfeng Xia & Jianlin Hu & Zhijin Zhang & Lichun Shu & Caxin Sun, 2011. "An S-Transform and Support Vector Machine (SVM)-Based Online Method for Diagnosing Broken Strands in Transmission Lines," Energies, MDPI, vol. 4(9), pages 1-23, August.
    4. Arends, Marcel & Hendriks, Paul H.J., 2014. "Smart grids, smart network companies," Utilities Policy, Elsevier, vol. 28(C), pages 1-11.
    5. Qing Yang & Bo Zhang & Jiaquan Ran & Song Chen & Yanxiao He & Jian Sun, 2017. "Measurement of Line-to-Ground Capacitance in Distribution Network Considering Magnetizing Impedance’s Frequency Characteristic," Energies, MDPI, vol. 10(4), pages 1-14, April.
    6. Kaihua Jiang & Lin Du & Huan Chen & Feng Yang & Yubo Wang, 2019. "Non-Contact Measurement and Polarity Discrimination-Based Identification Method for Direct Lightning Strokes," Energies, MDPI, vol. 12(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:4:y:2011:i:9:p:1301-1320:d:13737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.