IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2254-d1645003.html
   My bibliography  Save this article

Use of Capacitive Probes to Detect Asymmetry and Earth Fault in a Medium-Voltage Power Network

Author

Listed:
  • Krzysztof Walczak

    (Institute of Electric Power Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

  • Aleksandra Schött-Szymczak

    (Institute of Electric Power Engineering, Poznan University of Technology, 60-965 Poznan, Poland)

Abstract

The detection of short circuits in a medium-voltage (MV) network is a complex issue due to the way the neutral point works. An additional difficulty is the relatively large load asymmetry. The methods used so far include complex equipment (e.g., a system of voltage transformers) for use mainly in power stations. The detection of short circuits deep in the network is therefore difficult, and this could facilitate the process of fault localization and limit the areas that should be disconnected for the time of fault removal. This article presents the new concept of using a system of capacitive probes as a simple and cheap tool that allows for the detection of a short circuit in an MV network based on the assessment of the zero-voltage component. This component is considered to be one of the basic starting criteria for various types of specialist earth-fault protections. Appropriately placed capacitive probes—through the existence of capacitive coupling with phase conductors—record the voltages of individual phases, including the total resultant voltage, which is the criterion for detecting a short circuit in the system. An important advantage of using such a solution is that capacitive probes allow for voltage measurement and assessment of line asymmetry in a non-contact and, therefore, safe manner. The presented concept has been tested in the laboratory and supported by simulation studies. The modeling of the system was based on the parameters of real structures used in overhead lines, recreated in laboratory conditions. Obtaining positive results of the simulation studies—primarily the appropriate sensitivity of short-circuit detection, confirmed in the laboratory—allows for the creation of a prototype of the device and the commencement of field tests, which will be the subject of further work conducted by the authors.

Suggested Citation

  • Krzysztof Walczak & Aleksandra Schött-Szymczak, 2025. "Use of Capacitive Probes to Detect Asymmetry and Earth Fault in a Medium-Voltage Power Network," Energies, MDPI, vol. 18(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2254-:d:1645003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Tenbohlen & Chandra Prakash Beura & Wojciech Sikorski & Ricardo Albarracín Sánchez & Bruno Albuquerque de Castro & Michael Beltle & Pascal Fehlmann & Martin Judd & Falk Werner & Martin Siegel, 2023. "Frequency Range of UHF PD Measurements in Power Transformers," Energies, MDPI, vol. 16(3), pages 1-21, January.
    2. Krzysztof Lowczowski & Jozef Lorenc & Jerzy Andruszkiewicz & Zbigniew Nadolny & Jozef Zawodniak, 2019. "Novel Earth Fault Protection Algorithm Based on MV Cable Screen Zero Sequence Current Filter," Energies, MDPI, vol. 12(16), pages 1-20, August.
    3. Sonia Barrios & David Buldain & María Paz Comech & Ian Gilbert & Iñaki Orue, 2019. "Partial Discharge Classification Using Deep Learning Methods—Survey of Recent Progress," Energies, MDPI, vol. 12(13), pages 1-16, June.
    4. Sinda Kaziz & Mohamed Hadj Said & Antonino Imburgia & Bilel Maamer & Denis Flandre & Pietro Romano & Fares Tounsi, 2023. "Radiometric Partial Discharge Detection: A Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    5. Krzysztof Walczak, 2023. "Localization of HV Insulation Defects Using a System of Associated Capacitive Sensors," Energies, MDPI, vol. 16(5), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Kozioł & Łukasz Nagi & Tomasz Boczar & Zbigniew Nadolny, 2023. "Quantitative Analysis of Surface Partial Discharges through Radio Frequency and Ultraviolet Signal Measurements," Energies, MDPI, vol. 16(9), pages 1-15, April.
    2. Tomasz Boczar & Sebastian Borucki & Daniel Jancarczyk & Marcin Bernas & Pawel Kurtasz, 2022. "Application of Selected Machine Learning Techniques for Identification of Basic Classes of Partial Discharges Occurring in Paper-Oil Insulation Measured by Acoustic Emission Technique," Energies, MDPI, vol. 15(14), pages 1-13, July.
    3. Haresh Kumar & Muhammad Shafiq & Kimmo Kauhaniemi & Mohammed Elmusrati, 2024. "A Review on the Classification of Partial Discharges in Medium-Voltage Cables: Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques," Energies, MDPI, vol. 17(5), pages 1-31, February.
    4. Krzysztof Lowczowski & Jozef Lorenc & Jozef Zawodniak & Grzegorz Dombek, 2020. "Detection and Location of Earth Fault in MV Feeders Using Screen Earthing Current Measurements," Energies, MDPI, vol. 13(5), pages 1-24, March.
    5. Grzegorz Hołdyński & Zbigniew Skibko & Andrzej Borusiewicz, 2023. "Analysis of the Influence of Load on the Value of Zero-Voltage Asymmetry in Medium-Voltage Networks Operating with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-13, January.
    6. Yih-Der Lee & Jheng-Lun Jiang & Yuan-Hsiang Ho & Wei-Chen Lin & Hsin-Ching Chih & Wei-Tzer Huang, 2020. "Neutral Current Reduction in Three-Phase Four-Wire Distribution Feeders by Optimal Phase Arrangement Based on a Full-Scale Net Load Model Derived from the FTU Data," Energies, MDPI, vol. 13(7), pages 1-20, April.
    7. Piotr Hoduń & Michał Borecki, 2021. "Reliability Assessment of MV Power Connections," Energies, MDPI, vol. 14(21), pages 1-15, October.
    8. Christian Gianoglio & Edoardo Ragusa & Paolo Gastaldo & Federico Gallesi & Francesco Guastavino, 2021. "Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks," Energies, MDPI, vol. 14(15), pages 1-23, August.
    9. Marek Florkowski, 2024. "Comparison of Effects of Partial Discharge Echo in Various High-Voltage Insulation Systems," Energies, MDPI, vol. 17(20), pages 1-17, October.
    10. Zbigniew Nadolny, 2023. "Design and Optimization of Power Transformer Diagnostics," Energies, MDPI, vol. 16(18), pages 1-7, September.
    11. Jun Qiang Chan & Wong Jee Keen Raymond & Hazlee Azil Illias & Mohamadariff Othman, 2023. "Partial Discharge Localization Techniques: A Review of Recent Progress," Energies, MDPI, vol. 16(6), pages 1-31, March.
    12. Andrey A. Radionov & Ivan V. Liubimov & Igor M. Yachikov & Ildar R. Abdulveleev & Ekaterina A. Khramshina & Alexander S. Karandaev, 2023. "Method for Forecasting the Remaining Useful Life of a Furnace Transformer Based on Online Monitoring Data," Energies, MDPI, vol. 16(12), pages 1-27, June.
    13. Marek Florkowski, 2023. "Effect of Interplay between Parallel and Perpendicular Magnetic and Electric Fields on Partial Discharges," Energies, MDPI, vol. 16(13), pages 1-16, June.
    14. Sinda Kaziz & Mohamed Hadj Said & Antonino Imburgia & Bilel Maamer & Denis Flandre & Pietro Romano & Fares Tounsi, 2023. "Radiometric Partial Discharge Detection: A Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    15. Krzysztof Lowczowski & Jozef Lorenc & Andrzej Tomczewski & Zbigniew Nadolny & Jozef Zawodniak, 2020. "Monitoring of MV Cable Screens, Cable Joints and Earthing Systems Using Cable Screen Current Measurements," Energies, MDPI, vol. 13(13), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2254-:d:1645003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.