IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i8p2128-d1638845.html
   My bibliography  Save this article

A Synchronization of Permanent Magnet Synchronous Generator Dedicated for Small and Medium Hydroelectric Plants

Author

Listed:
  • Adam Gozdowiak

    (Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Maciej Antal

    (Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

This article presents the simulation results of synchronization of a permanent magnet synchronous generator (PMSG) dedicated for a hydroelectric plant without power converter devices. The proposed machine design allows to connect a generator to the grid in two different ways. With the first method, the machine is connected to the grid in a similar way as in the case of an electrically excited synchronous generator. The second method is a direct line-start process based on asynchronous torque—similar to asynchronous motor start. Both methods can be used alternately. The advantages of the presented design are elimination of converter devices for starting the PMSG, possibility of use in small and medium hydroelectric power plants, operation with a high efficiency and high power factor in a wide range of generated power, and smaller dimensions in comparison to the generators currently used. The described rotor design allows for the elimination of capacitor batteries for compensation of reactive power drawn by induction generators commonly used in small hydroelectric plants. In addition, due to the high efficiency of the PMSG, high power factor, and appropriately selected design, the starting current during synchronization is smaller than in the case of an induction generator, which means that the structural elements wear out more slowly, and thus, the generator’s service life is increased. In this work, it is shown that PMSG with a rotor cage should have permanent magnets with an increased temperature class in order to avoid demagnetization of the magnets during asynchronous start-up. In addition, manufacturers of such generators should provide the number of start-up cycles from cold and warm states in order to avoid shortening the service life of the machine. The main objective of the article is to present the methods of synchronizing a generator of such a design (a rotor with permanent magnets and a starting cage) and their consequences on the behavior of the machine. The presented design allows synchronization of the generator with the network in two ways. The first method enables synchronization of the generator with the power system by asynchronous start-up, i.e., obtaining a starting torque exceeding the braking torque from the magnets. The second method of synchronization is similar to the method used in electromagnetically excited generators, i.e., before connecting, the rotor is accelerated to synchronous speed by means of a water turbine, and then, the machine is connected to the grid by switching on the circuit breaker. This paper presents electromagnetic phenomena occurring in both cases of synchronization and describes the influence of magnet temperature on physical quantities.

Suggested Citation

  • Adam Gozdowiak & Maciej Antal, 2025. "A Synchronization of Permanent Magnet Synchronous Generator Dedicated for Small and Medium Hydroelectric Plants," Energies, MDPI, vol. 18(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2128-:d:1638845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/8/2128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/8/2128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Catalin Petrea Ion & Marius Daniel Calin & Ioan Peter, 2023. "Design of a 3 kW PMSM with Super Premium Efficiency," Energies, MDPI, vol. 16(1), pages 1-11, January.
    2. Adam Gozdowiak, 2020. "Faulty Synchronization of Salient Pole Synchronous Hydro Generator," Energies, MDPI, vol. 13(20), pages 1-21, October.
    3. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hendra Hendra & Dhimas Satria & Hernadewita Hernadewita & Yozerizal Yozerizal & Frengki Hardian & Ahmed M. Galal, 2023. "Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    2. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    3. Xiaoshuai Bi & Likun Wang & Fabrizio Marignetti & Minghao Zhou, 2021. "Research on Electromagnetic Field, Eddy Current Loss and Heat Transfer in the End Region of Synchronous Condenser with Different End Structures and Material Properties," Energies, MDPI, vol. 14(15), pages 1-15, July.
    4. Peter Tauš & Martin Beer, 2022. "Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities," Energies, MDPI, vol. 15(10), pages 1-15, May.
    5. Peng Zhou & Yanliang Xu & Wenji Zhang, 2023. "Design Consideration on a Low-Cost Permanent Magnetization Remanufacturing Method for Low-Efficiency Induction Motors," Energies, MDPI, vol. 16(17), pages 1-22, August.
    6. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.
    7. Kuo-Chen Wu & Jui-Chu Lin & Wen-Te Chang & Chia-Szu Yen & Huang-Jie Fu, 2023. "Research and Analysis of Promotional Policies for Small Hydropower Generation in Taiwan," Energies, MDPI, vol. 16(13), pages 1-16, June.
    8. Józef Borkowski & Mirosław Szmajda & Janusz Mroczka, 2021. "The Influence of Power Network Disturbances on Short Delayed Estimation of Fundamental Frequency Based on IpDFT Method with GMSD Windows," Energies, MDPI, vol. 14(20), pages 1-26, October.
    9. Olivier Cleynen & Dennis Powalla & Stefan Hoerner & Dominique Thévenin, 2022. "An Efficient Method for Computing the Power Potential of Bypass Hydropower Installations," Energies, MDPI, vol. 15(9), pages 1-13, April.
    10. Cemil Ocak, 2023. "A FEM-Based Comparative Study of the Effect of Rotor Bar Designs on the Performance of Squirrel Cage Induction Motors," Energies, MDPI, vol. 16(16), pages 1-17, August.
    11. Rodolfo V. Rocha & Renato M. Monaro, 2023. "Algorithm for Fast Detection of Stator Turn Faultsin Variable-Speed Synchronous Generators," Energies, MDPI, vol. 16(5), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:8:p:2128-:d:1638845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.