IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4752-d1743838.html
   My bibliography  Save this article

Trefftz Method for Time-Dependent Boiling Heat Transfer Calculations in a Mini-Channel Utilising Various Spatial Orientations of the Flow

Author

Listed:
  • Magdalena Piasecka

    (Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland)

  • Sylwia Hożejowska

    (Faculty of Management and Computer Modelling, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland)

  • Artur Maciąg

    (Faculty of Management and Computer Modelling, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland)

  • Anna Pawińska

    (Faculty of Management and Computer Modelling, Kielce University of Technology, Al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland)

Abstract

The main objective of this study was to investigate boiling heat transfer during refrigerant flow in a mini-channel heat sink. The test section consisted of multiple parallel mini-channels, each with a depth of 1 mm. The working fluid was heated by a thin layer of Haynes-230 alloy with a thickness of 0.1 mm. The outer surface temperature of the heater was measured using infrared thermography, while other thermal and flow-based parameters were recorded via a dedicated data acquisition system. The mini-channel heat sink was tested in seven different spatial orientations, with inclination angles relative to the horizontal plane of 45°, 60°, 75°, 90°, 105°, 120°, and 135°. The analysis focused on the early stage of the experiment, corresponding to the forced convection, boiling incipience, and subcooled boiling region. A time-dependent, two-dimensional model of heat transfer during flow boiling of a refrigerant in asymmetrically heated mini-channels was developed. The temperatures of both the heating foil and the working fluid (Fluorinert FC-770) were described using appropriate forms of the Fourier–Kirchhoff equation, subject to relevant boundary conditions. Two sets of time-dependent Trefftz functions were employed to solve the governing equations: one set corresponding to the two-dimensional Fourier equation and another, newly derived, for the energy equation in the fluid. The results include thermographic images of the heated surface, temperature distributions, fluid temperatures, local heat-transfer coefficients, and boiling curves. A comparison of the heat-transfer coefficients obtained using the Trefftz-based approach and those calculated using Fourier’s law demonstrated satisfactory agreement.

Suggested Citation

  • Magdalena Piasecka & Sylwia Hożejowska & Artur Maciąg & Anna Pawińska, 2025. "Trefftz Method for Time-Dependent Boiling Heat Transfer Calculations in a Mini-Channel Utilising Various Spatial Orientations of the Flow," Energies, MDPI, vol. 18(17), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4752-:d:1743838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Piasecka & Sylwia Hożejowska & Beata Maciejewska & Anna Pawińska, 2021. "Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink," Energies, MDPI, vol. 14(7), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Piasecka & Kinga Strąk, 2021. "Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orientations," Energies, MDPI, vol. 14(16), pages 1-30, August.
    2. Magda Joachimiak, 2021. "Analysis of Thermodynamic Parameter Variability in a Chamber of a Furnace for Thermo-Chemical Treatment," Energies, MDPI, vol. 14(10), pages 1-18, May.
    3. Magdalena Piasecka & Beata Maciejewska & Artur Piasecki, 2023. "Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements," Energies, MDPI, vol. 16(3), pages 1-19, January.
    4. Magdalena Piasecka & Sylwia Hożejowska & Anna Pawińska & Dariusz Strąk, 2022. "Heat Transfer Analysis of a Co-Current Heat Exchanger with Two Rectangular Mini-Channels," Energies, MDPI, vol. 15(4), pages 1-19, February.
    5. Artur Piasecki & Sylwia Hożejowska & Aneta Masternak-Janus & Magdalena Piasecka, 2024. "Using Quality Function Deployment to Assess the Efficiency of Mini-Channel Heat Exchangers," Energies, MDPI, vol. 17(10), pages 1-29, May.
    6. Tomasz Janusz Teleszewski & Leszek Hożejowski, 2024. "Estimating Sludge Deposition on the Heat Exchanger in the Digester of a Biogas Plant," Sustainability, MDPI, vol. 16(18), pages 1-13, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4752-:d:1743838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.