IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4679-d1741211.html
   My bibliography  Save this article

Fuzzy Logic Estimation of Coincidence Factors for EV Fleet Charging Infrastructure Planning in Residential Buildings

Author

Listed:
  • Salvador Carvalhosa

    (INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Centre for Power and Energy Systems, s/n R. Dr. Roberto Frias, 4200-465 Porto, Portugal
    Faculty of Engineering, University of Porto, s/n R. Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • José Rui Ferreira

    (INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Centre for Power and Energy Systems, s/n R. Dr. Roberto Frias, 4200-465 Porto, Portugal
    Faculty of Engineering, University of Porto, s/n R. Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • Rui Esteves Araújo

    (INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Centre for Power and Energy Systems, s/n R. Dr. Roberto Frias, 4200-465 Porto, Portugal
    Faculty of Engineering, University of Porto, s/n R. Dr. Roberto Frias, 4200-465 Porto, Portugal)

Abstract

As electric vehicle (EV) adoption accelerates, residential buildings—particularly multi-dwelling structures—face increasing challenges to electrical infrastructure, notably due to conservative sizing practices of electrical feeders based on maximum simultaneous demand. Current sizing methods assume all EVs charge simultaneously at maximum capacity, resulting in unnecessarily oversized and costly electrical installations. This study proposes an optimized methodology to estimate accurate coincidence factors, leveraging simulations of EV user charging behaviors in multi-dwelling residential environments. Charging scenarios considering different fleet sizes (1 to 70 EVs) were simulated under two distinct premises of charging: minimization of current allocation to achieve the desired battery state-of-charge and maximization of instantaneous power delivery. Results demonstrate significant deviations from conventional assumptions, with estimated coincidence factors decreasing non-linearly as fleet size increases. Specifically, applying the derived coincidence factors can reduce feeder section requirements by up to 86%, substantially lowering material costs. A fuzzy logic inference model is further developed to refine these estimates based on fleet characteristics and optimization preferences, providing a practical tool for infrastructure planners. The results were compared against other studies and real-life data. Finally, the proposed methodology thus contributes to more efficient, cost-effective design strategies for EV charging infrastructures in residential buildings.

Suggested Citation

  • Salvador Carvalhosa & José Rui Ferreira & Rui Esteves Araújo, 2025. "Fuzzy Logic Estimation of Coincidence Factors for EV Fleet Charging Infrastructure Planning in Residential Buildings," Energies, MDPI, vol. 18(17), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4679-:d:1741211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4679/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4679/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jasmine Ramsebner & Albert Hiesl & Reinhard Haas, 2020. "Efficient Load Management for BEV Charging Infrastructure in Multi-Apartment Buildings," Energies, MDPI, vol. 13(22), pages 1-23, November.
    2. Shin-Ki Hong & Sung Gu Lee & Myungchin Kim, 2020. "Assessment and Mitigation of Electric Vehicle Charging Demand Impact to Transformer Aging for an Apartment Complex," Energies, MDPI, vol. 13(10), pages 1-23, May.
    3. Tim Jonas & Noah Daniels & Gretchen Macht, 2023. "Electric Vehicle User Behavior: An Analysis of Charging Station Utilization in Canada," Energies, MDPI, vol. 16(4), pages 1-19, February.
    4. Ahmad Almaghrebi & Kevin James & Fares Al Juheshi & Mahmoud Alahmad, 2024. "Insights into Household Electric Vehicle Charging Behavior: Analysis and Predictive Modeling," Energies, MDPI, vol. 17(4), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Almaghrebi & Kevin James & Fares Al Juheshi & Mahmoud Alahmad, 2024. "Insights into Household Electric Vehicle Charging Behavior: Analysis and Predictive Modeling," Energies, MDPI, vol. 17(4), pages 1-20, February.
    2. Bingkun Song & Udaya K. Madawala & Craig A. Baguley, 2023. "Optimal Planning Strategy for Reconfigurable Electric Vehicle Chargers in Car Parks," Energies, MDPI, vol. 16(20), pages 1-21, October.
    3. Yang, YeHa & Yang, SoYoung & Moon, HyungBin & Woo, JongRoul, 2024. "Analyzing heterogeneous electric vehicle charging preferences for strategic time-of-use tariff design and infrastructure development: A latent class approach," Applied Energy, Elsevier, vol. 374(C).
    4. Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Leonardo Nogueira Fontoura da Silva & Nelson Knak Neto & Jordan Passinato Sausen & Carlos Henrique Barriquello & Alzenira da Rosa Abaide, 2024. "User Behavior in Fast Charging of Electric Vehicles: An Analysis of Parameters and Clustering," Energies, MDPI, vol. 17(19), pages 1-20, September.
    5. Albert Hiesl & Jasmine Ramsebner & Reinhard Haas, 2021. "Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria," Energies, MDPI, vol. 14(6), pages 1-19, March.
    6. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    7. Mostafa Shibl & Loay Ismail & Ahmed Massoud, 2020. "Machine Learning-Based Management of Electric Vehicles Charging: Towards Highly-Dispersed Fast Chargers," Energies, MDPI, vol. 13(20), pages 1-24, October.
    8. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    9. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    10. Xiuli Wang & Junkai Wei & Fushuan Wen & Kai Wang, 2023. "A Trading Mode Based on the Management of Residual Electric Energy in Electric Vehicles," Energies, MDPI, vol. 16(17), pages 1-23, August.
    11. Maher Alaraj & Mohammed Radi & Elaf Alsisi & Munir Majdalawieh & Mohamed Darwish, 2025. "Machine Learning-Based Electric Vehicle Charging Demand Forecasting: A Systematized Literature Review," Energies, MDPI, vol. 18(17), pages 1-92, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4679-:d:1741211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.