IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3865-d1705902.html
   My bibliography  Save this article

Transient Subcooled Boiling in Minichannels: Experimental Study and Numerical Modelling Using Trefftz Functions and ADINA

Author

Listed:
  • Beata Maciejewska

    (Faculty of Management and Computer Modelling, Kielce University of Technology, 25-314 Kielce, Poland)

  • Magdalena Piasecka

    (Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314 Kielce, Poland)

  • Paweł Łabędzki

    (Faculty of Management and Computer Modelling, Kielce University of Technology, 25-314 Kielce, Poland)

Abstract

This study focuses on the phenomenon of boiling heat transfer during fluid flow (Fluorinert FC-72) in minichannels. The research stand was built around a specially designed test section incorporating sets of aligned minichannels, each 1 mm deep. These channel arrays varied in number, comprising configurations with 7, 15, 17, 19, 21, and 25 parallel channels. The test section was vertically orientated with upward fluid flow. To address the heat transfer problem associated with transient flow boiling, two numerical approaches grounded in the finite element method (FEM) were employed. One used the Trefftz function formulation, while the other relied on simulations performed using the commercial software ADINA (version 9.2). In both approaches, the heat transfer coefficient at the interface between the heated foil and the working fluid was determined by applying a Robin-type boundary condition, which required knowledge of the temperatures in both the foil and the fluid, along with the temperature gradient within the foil. The outcomes of both FEM-based models, as well as those of a simplified 1D method based on Newton’s cooling law, yielded satisfactory results.

Suggested Citation

  • Beata Maciejewska & Magdalena Piasecka & Paweł Łabędzki, 2025. "Transient Subcooled Boiling in Minichannels: Experimental Study and Numerical Modelling Using Trefftz Functions and ADINA," Energies, MDPI, vol. 18(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3865-:d:1705902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magdalena Piasecka & Beata Maciejewska & Paweł Łabędzki, 2020. "Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat Sink Using the Trefftz Functions and ADINA Software," Energies, MDPI, vol. 13(24), pages 1-25, December.
    2. Dou, Fangfang & Li, Zi-Cai & Chen, C.S. & Tian, Zhaolu, 2018. "Analysis on the method of fundamental solutions for biharmonic equations," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 346-366.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Piasecka & Kinga Strąk, 2021. "Characteristics of Refrigerant Boiling Heat Transfer in Rectangular Mini-Channels during Various Flow Orientations," Energies, MDPI, vol. 14(16), pages 1-30, August.
    2. Piotr Duda, 2023. "Heat Transfer Coefficient Distribution—A Review of Calculation Methods," Energies, MDPI, vol. 16(9), pages 1-21, April.
    3. Magdalena Piasecka, 2023. "Heat and Mass Transfer Issues in Mini-Gaps," Energies, MDPI, vol. 16(16), pages 1-6, August.
    4. Magdalena Piasecka & Beata Maciejewska & Artur Piasecki, 2023. "Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements," Energies, MDPI, vol. 16(3), pages 1-19, January.
    5. Magdalena Piasecka & Sylwia Hożejowska & Anna Pawińska & Dariusz Strąk, 2022. "Heat Transfer Analysis of a Co-Current Heat Exchanger with Two Rectangular Mini-Channels," Energies, MDPI, vol. 15(4), pages 1-19, February.
    6. Varun Kumar & K. Chandan & K. V. Nagaraja & M. V. Reddy, 2022. "Heat Conduction with Krylov Subspace Method Using FEniCSx," Energies, MDPI, vol. 15(21), pages 1-16, October.
    7. Eloy Hontoria & Alejandro López-Belchí & Nolberto Munier & Francisco Vera-García, 2021. "A MCDM Methodology to Determine the Most Critical Variables in the Pressure Drop and Heat Transfer in Minichannels," Energies, MDPI, vol. 14(8), pages 1-13, April.
    8. Magdalena Piasecka & Sylwia Hożejowska & Beata Maciejewska & Anna Pawińska, 2021. "Time-Dependent Heat Transfer Calculations with Trefftz and Picard Methods for Flow Boiling in a Mini-Channel Heat Sink," Energies, MDPI, vol. 14(7), pages 1-24, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3865-:d:1705902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.