IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3773-d1703137.html
   My bibliography  Save this article

Improvement of Positive and Negative Feedback Power Hardware-in-the-Loop Interfaces Using Smith Predictor

Author

Listed:
  • Lucas Braun

    (Institute of Electric Energy Systems and High-Voltage Technology (IEH), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

  • Jonathan Mader

    (Institute of Electric Energy Systems and High-Voltage Technology (IEH), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

  • Michael Suriyah

    (Institute of Electric Energy Systems and High-Voltage Technology (IEH), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

  • Thomas Leibfried

    (Institute of Electric Energy Systems and High-Voltage Technology (IEH), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

Abstract

Power hardware-in-the-loop (PHIL) creates a safe test environment to connect simulations with real hardware under test (HuT). Therefore, an interface algorithm (IA) must be chosen. The ideal transformer method (ITM) and the partial circuit duplication (PCD) are popular IAs, where a distinction is made between voltage- (V-) and current-type (C-) IAs. Depending on the sample time of the simulator and further delays, simulation accuracy is reduced and instability can occur due to negative feedback in the V-ITM and C-ITM control loops, which makes PHIL operation impossible. In the case of positive feedback, such as with the V-PCD and C-PCD, the delay causes destructive interference, which results in a phase shift and attenuation of the output signal. In this article, a novel damped Smith predictor (SP) for positive feedback PHIL IAs is presented, which significantly reduces destructive interference while allowing stable operation at low linking impedances at V-PCD and high linking impedances at C-PCD, thus reducing losses in the system. Experimental results show a reduction in phase shift by 21.17° and attenuation improvement of 24.3% for V-PCD at a sample time of 100 µs. The SP transfer functions are also derived and integrated into the listed negative feedback IAs, resulting in an increase in the gain margin (GM) from approximately one to three, which significantly enhances system stability. The proposed methods can improve stability and accuracy, which can be further improved by calculating the HuT impedance in real-time and dynamically adapting the SP model. Stable PHIL operation with SP is also possible with SP model errors or sudden HuT impedance changes, as long as deviations stay within the presented limits.

Suggested Citation

  • Lucas Braun & Jonathan Mader & Michael Suriyah & Thomas Leibfried, 2025. "Improvement of Positive and Negative Feedback Power Hardware-in-the-Loop Interfaces Using Smith Predictor," Energies, MDPI, vol. 18(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3773-:d:1703137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jana Ihrens & Stefan Möws & Lennard Wilkening & Thorsten A. Kern & Christian Becker, 2021. "The Impact of Time Delays for Power Hardware-in-the-Loop Investigations," Energies, MDPI, vol. 14(11), pages 1-15, May.
    2. Ron Brandl, 2017. "Operational Range of Several Interface Algorithms for Different Power Hardware-In-The-Loop Setups," Energies, MDPI, vol. 10(12), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2023. "Power Hardware-in-the-Loop (PHIL): A Review to Advance Smart Inverter-Based Grid-Edge Solutions," Energies, MDPI, vol. 16(2), pages 1-27, January.
    2. Falko Ebe & Basem Idlbi & David E. Stakic & Shuo Chen & Christoph Kondzialka & Matthias Casel & Gerd Heilscher & Christian Seitl & Roland Bründlinger & Thomas I. Strasser, 2018. "Comparison of Power Hardware-in-the-Loop Approaches for the Testing of Smart Grid Controls," Energies, MDPI, vol. 11(12), pages 1-29, December.
    3. Tania García-Sánchez & Irene Muñoz-Benavente & Emilio Gómez-Lázaro & Ana Fernández-Guillamón, 2020. "Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips," Energies, MDPI, vol. 13(16), pages 1-19, August.
    4. Juan Montoya & Ron Brandl & Keerthi Vishwanath & Jay Johnson & Rachid Darbali-Zamora & Adam Summers & Jun Hashimoto & Hiroshi Kikusato & Taha Selim Ustun & Nayeem Ninad & Estefan Apablaza-Arancibia & , 2020. "Advanced Laboratory Testing Methods Using Real-Time Simulation and Hardware-in-the-Loop Techniques: A Survey of Smart Grid International Research Facility Network Activities," Energies, MDPI, vol. 13(12), pages 1-38, June.
    5. Efren Guillo-Sansano & Mazheruddin H. Syed & Andrew J. Roscoe & Graeme M. Burt, 2018. "Initialization and Synchronization of Power Hardware-In-The-Loop Simulations: A Great Britain Network Case Study," Energies, MDPI, vol. 11(5), pages 1-14, April.
    6. Moiz Muhammad & Holger Behrends & Stefan Geißendörfer & Karsten von Maydell & Carsten Agert, 2021. "Power Hardware-in-the-Loop: Response of Power Components in Real-Time Grid Simulation Environment," Energies, MDPI, vol. 14(3), pages 1-20, January.
    7. Thomas I. Strasser & Sebastian Rohjans & Graeme M. Burt, 2019. "Methods and Concepts for Designing and Validating Smart Grid Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3773-:d:1703137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.