IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2976-d1672195.html
   My bibliography  Save this article

Energy Management and Edge-Driven Trading in Fractal-Structured Microgrids: A Machine Learning Approach

Author

Listed:
  • Mostafa Pasandideh

    (Ahuora—Centre for Smart Energy Systems, School of Computing and Mathematical Sciences, University of Waikato, Hamilton 3240, New Zealand)

  • Jason Kurz

    (Department of Mathematics, University of Waikato, Hamilton 3240, New Zealand)

  • Mark Apperley

    (Ahuora—Centre for Smart Energy Systems, School of Computing and Mathematical Sciences, University of Waikato, Hamilton 3240, New Zealand)

Abstract

The integration of renewable energy into residential microgrids presents significant challenges due to solar generation intermittency and variability in household electricity demand. Traditional forecasting methods, reliant on historical data, fail to adapt effectively in dynamic scenarios, leading to inefficient energy management. This paper introduces a novel adaptive energy management framework that integrates streaming machine learning (SML) with a hierarchical fractal microgrid architecture to deliver precise real-time electricity demand forecasts for a residential community. Leveraging incremental learning capabilities, the proposed model continuously updates, achieving robust predictive performance with mean absolute errors (MAE) across individual households and the community of less than 10% of typical hourly consumption values. Three battery-sizing scenarios are analytically evaluated: centralised battery, uniformly distributed batteries, and a hybrid model of uniformly distributed batteries plus an optimised central battery. Predictive adaptive management significantly reduced cumulative grid usage compared to traditional methods, with a 20% reduction in energy deficit events, and optimised battery cycling frequency extending battery lifecycle. Furthermore, the adaptive framework conceptually aligns with digital twin methodologies, facilitating real-time operational adjustments. The findings provide critical insights into sustainable, decentralised microgrid management, emphasising improved operational efficiency, enhanced battery longevity, reduced grid dependence, and robust renewable energy utilisation.

Suggested Citation

  • Mostafa Pasandideh & Jason Kurz & Mark Apperley, 2025. "Energy Management and Edge-Driven Trading in Fractal-Structured Microgrids: A Machine Learning Approach," Energies, MDPI, vol. 18(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2976-:d:1672195
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tianze Lan & Kittisak Jermsittiparsert & Sara T. Alrashood & Mostafa Rezaei & Loiy Al-Ghussain & Mohamed A. Mohamed, 2021. "An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand," Energies, MDPI, vol. 14(3), pages 1-25, January.
    2. Nataliia Shamarova & Konstantin Suslov & Pavel Ilyushin & Ilia Shushpanov, 2022. "Review of Battery Energy Storage Systems Modeling in Microgrids with Renewables Considering Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-18, September.
    3. Olivia Bruj & Adrian Calborean, 2025. "Electrochemical Impedance Spectroscopy Investigation on the Charge–Discharge Cycle Life Performance of Lithium-Ion Batteries," Energies, MDPI, vol. 18(6), pages 1-18, March.
    4. Alexis Geslin & Le Xu & Devi Ganapathi & Kevin Moy & William C. Chueh & Simona Onori, 2025. "Dynamic cycling enhances battery lifetime," Nature Energy, Nature, vol. 10(2), pages 172-180, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
    2. Li Zeng & Tian Xia & Salah K. Elsayed & Mahrous Ahmed & Mostafa Rezaei & Kittisak Jermsittiparsert & Udaya Dampage & Mohamed A. Mohamed, 2021. "A Novel Machine Learning-Based Framework for Optimal and Secure Operation of Static VAR Compensators in EAFs," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    3. Angelos Patsidis & Adam Dyśko & Campbell Booth & Anastasios Oulis Rousis & Polyxeni Kalliga & Dimitrios Tzelepis, 2023. "Digital Architecture for Monitoring and Operational Analytics of Multi-Vector Microgrids Utilizing Cloud Computing, Advanced Virtualization Techniques, and Data Analytics Methods," Energies, MDPI, vol. 16(16), pages 1-19, August.
    4. Gupta, S. & Maulik, A. & Das, D. & Singh, A., 2022. "Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Ana Pavlićević & Saša Mujović, 2022. "Impact of Reactive Power from Public Electric Vehicle Stations on Transformer Aging and Active Energy Losses," Energies, MDPI, vol. 15(19), pages 1-24, September.
    6. Mohamed A. Mohamed & Seyedali Mirjalili & Udaya Dampage & Saleh H. Salmen & Sami Al Obaid & Andres Annuk, 2021. "A Cost-Efficient-Based Cooperative Allocation of Mining Devices and Renewable Resources Enhancing Blockchain Architecture," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    7. Nick Rigogiannis & Ioannis Bogatsis & Christos Pechlivanis & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Moving towards Greener Road Transportation: A Review," Clean Technol., MDPI, vol. 5(2), pages 1-25, June.
    8. Nisitha Padmawansa & Kosala Gunawardane & Samaneh Madanian & Amanullah Maung Than Oo, 2023. "Battery Energy Storage Capacity Estimation for Microgrids Using Digital Twin Concept," Energies, MDPI, vol. 16(12), pages 1-18, June.
    9. Fahad Alsokhiry & Andres Annuk & Toivo Kabanen & Mohamed A. Mohamed, 2022. "A Malware Attack Enabled an Online Energy Strategy for Dynamic Wireless EVs within Transportation Systems," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
    10. Surender Reddy Salkuti, 2023. "Advanced Technologies for Energy Storage and Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-7, February.
    11. Majed A. Alotaibi & Ali M. Eltamaly, 2022. "Upgrading Conventional Power System for Accommodating Electric Vehicle through Demand Side Management and V2G Concepts," Energies, MDPI, vol. 15(18), pages 1-27, September.
    12. AbdulRahman Salem & Basil M. Darras & Mohammad Nazzal, 2025. "Framework for Selecting the Most Effective State of Health Method for Second-Life Lithium-Ion Batteries: A Scientometric and Multi-Criteria Decision Matrix Approach," Energies, MDPI, vol. 18(6), pages 1-24, March.
    13. Khalid Alnowibet & Andres Annuk & Udaya Dampage & Mohamed A. Mohamed, 2021. "Effective Energy Management via False Data Detection Scheme for the Interconnected Smart Energy Hub–Microgrid System under Stochastic Framework," Sustainability, MDPI, vol. 13(21), pages 1-32, October.
    14. Ronke M. Ayo-Imoru & Ahmed A. Ali & Pitshou N. Bokoro, 2022. "Analysis of a Hybrid Nuclear Renewable Energy Resource in a Distributed Energy System for a Rural Area in Nigeria," Energies, MDPI, vol. 15(20), pages 1-14, October.
    15. Matteo Spiller & Giuliano Rancilio & Filippo Bovera & Giacomo Gorni & Stefano Mandelli & Federico Bresciani & Marco Merlo, 2023. "A Model-Aware Comprehensive Tool for Battery Energy Storage System Sizing," Energies, MDPI, vol. 16(18), pages 1-24, September.
    16. Muhammad Anique Aslam & Syed Abdul Rahman Kashif & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "A Novel Multi Level Dynamic Decomposition Based Coordinated Control of Electric Vehicles in Multimicrogrids," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
    17. Taicheng Zhang & Qiao Peng & Shihong Zeng, 2025. "Predicting EV Charging Demand in Renewable-Energy-Powered Grids Using Explainable Machine Learning," Sustainability, MDPI, vol. 17(9), pages 1-22, May.
    18. Hail Jung & Jinsu Jeon & Dahui Choi & Jung-Ywn Park, 2021. "Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    19. Young-Eun Jeon & Suk-Bok Kang & Jung-In Seo, 2022. "Hybrid Predictive Modeling for Charging Demand Prediction of Electric Vehicles," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    20. Vladislav Volnyi & Pavel Ilyushin & Konstantin Suslov & Sergey Filippov, 2023. "Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks," Energies, MDPI, vol. 16(15), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2976-:d:1672195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.