IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2849-d1667907.html
   My bibliography  Save this article

Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water

Author

Listed:
  • Ashkan Arfanejad

    (Department of Oil and Gas Technologies, Perm National Research Polytechnic University, Perm 614990, Russia)

  • Vladimir Poplygin

    (Kogalym Educational Center, Perm National Research Polytechnic University, Kogalym 628482, Russia)

  • Xian Shi

    (School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266000, China)

Abstract

This study investigated methane hydrate formation and dissociation within a temperature range of 280 to 290 K and a pressure range of 5.5 to 13 MPa. These conditions are relevant to natural gas systems, where methane is the primary component of natural gas. Either experimental or thermodynamic models were used to predict the conditions of formation of gas hydrates. The Van der Waals–Platteeuw model based on statistical thermodynamics is the basis of the existing thermodynamic models for predicting the conditions of hydrate formation. In this work, the stepwise heating method was applied to determine the thermodynamic equilibrium points of methane gas in a constant volume system. The CPA (Cubic Plus Association) equation of state and the Van der Waals–Platteeuw model were employed to simulate hydrate formation conditions. Experimental equilibrium data for pure methane were compared with results from previous studies (Deaton and Frost, Nakamura, Jhaveri and Robinson, De Roo, and others). The results showed excellent agreement, with an average absolute temperature error of less than 0.1%. This high level of accuracy confirms the reliability of the experimental procedures and thermodynamic modeling approaches used in the study to accurately predict hydrate formation conditions, being critical for designing and operating natural gas systems in order to avoid hydrate accumulation.

Suggested Citation

  • Ashkan Arfanejad & Vladimir Poplygin & Xian Shi, 2025. "Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water," Energies, MDPI, vol. 18(11), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2849-:d:1667907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Mengru & Song, Yongchen & Zheng, Jia-nan & Gong, Guangjun & Yang, Mingjun, 2022. "Effects of temperature gradient on methane hydrate formation and dissociation processes and sediment heat transfer characteristics," Energy, Elsevier, vol. 261(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    2. Li, Yanghui & Wang, Le & Xie, Yao & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Song, Yongchen, 2023. "Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation," Energy, Elsevier, vol. 275(C).
    3. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & Briceño Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).
    4. Liu, Weiguo & Song, Qi & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Li, Yanghui, 2023. "Triaxial tests on anisotropic consolidated methane hydrate-bearing clayey-silty sediments of the South China Sea," Energy, Elsevier, vol. 284(C).
    5. Li, Xingxun & Wei, Rucheng & Li, Qingping & Pang, Weixin & Chen, Guangjin & Sun, Changyu, 2023. "Application of infrared thermal imaging technique in in-situ temperature field measurement of hydrate-bearing sediment under thermal stimulation," Energy, Elsevier, vol. 265(C).
    6. Dong, Shuang & Yang, Mingjun & Zhang, Lei & Zheng, Jia-nan & Song, Yongchen, 2023. "Methane hydrate exploitation characteristics and thermodynamic non-equilibrium mechanisms by long depressurization method," Energy, Elsevier, vol. 280(C).
    7. Xuemin Zhang & Wenqiang Cui & Jiale Chen & Yetao Zhang & Jiacheng Liu & Jinping Li & Qingqing Liu & Qing Yuan & Qingbai Wu, 2025. "A Comprehensive Review on the Rapid Hydrate Formation for CO2 Capture: Characteristics, Mechanism, and Applications," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 15(2), pages 277-301, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2849-:d:1667907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.