Author
Listed:
- Ashkan Arfanejad
(Department of Oil and Gas Technologies, Perm National Research Polytechnic University, Perm 614990, Russia)
- Vladimir Poplygin
(Kogalym Educational Center, Perm National Research Polytechnic University, Kogalym 628482, Russia)
- Xian Shi
(School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266000, China)
Abstract
This study investigated methane hydrate formation and dissociation within a temperature range of 280 to 290 K and a pressure range of 5.5 to 13 MPa. These conditions are relevant to natural gas systems, where methane is the primary component of natural gas. Either experimental or thermodynamic models were used to predict the conditions of formation of gas hydrates. The Van der Waals–Platteeuw model based on statistical thermodynamics is the basis of the existing thermodynamic models for predicting the conditions of hydrate formation. In this work, the stepwise heating method was applied to determine the thermodynamic equilibrium points of methane gas in a constant volume system. The CPA (Cubic Plus Association) equation of state and the Van der Waals–Platteeuw model were employed to simulate hydrate formation conditions. Experimental equilibrium data for pure methane were compared with results from previous studies (Deaton and Frost, Nakamura, Jhaveri and Robinson, De Roo, and others). The results showed excellent agreement, with an average absolute temperature error of less than 0.1%. This high level of accuracy confirms the reliability of the experimental procedures and thermodynamic modeling approaches used in the study to accurately predict hydrate formation conditions, being critical for designing and operating natural gas systems in order to avoid hydrate accumulation.
Suggested Citation
Ashkan Arfanejad & Vladimir Poplygin & Xian Shi, 2025.
"Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water,"
Energies, MDPI, vol. 18(11), pages 1-12, May.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:11:p:2849-:d:1667907
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2849-:d:1667907. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.