IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p329-d1315874.html
   My bibliography  Save this article

Short-Term Solar Irradiance Prediction with a Hybrid Ensemble Model Using EUMETSAT Satellite Images

Author

Listed:
  • Jayesh Thaker

    (Department of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany)

  • Robert Höller

    (School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria)

  • Mufaddal Kapasi

    (School of Engineering, University of Applied Sciences Upper Austria, 4600 Wels, Austria)

Abstract

Accurate short-term solar irradiance forecasting is crucial for the efficient operation of solar energy-driven photovoltaic (PV) power plants. In this research, we introduce a novel hybrid ensemble forecasting model that amalgamates the strengths of machine learning tree-based models and deep learning neuron-based models. The hybrid ensemble model integrates the interpretability of tree-based models with the capacity of neuron-based models to capture complex temporal dependencies within solar irradiance data. Furthermore, stacking and voting ensemble strategies are employed to harness the collective strengths of these models, significantly enhancing the prediction accuracy. This integrated methodology is enhanced by incorporating pixels from satellite images provided by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). These pixels are converted into structured data arrays and employed as exogenous inputs in the algorithm. The primary objective of this study is to improve the accuracy of short-term solar irradiance predictions, spanning a forecast horizon up to 6 h ahead. The incorporation of EUMETSAT satellite image pixel data enables the model to extract valuable spatial and temporal information, thus enhancing the overall forecasting precision. This research also includes a detailed analysis of the derivation of the GHI using satellite images. The study was carried out and the models tested across three distinct locations in Austria. A detailed comparative analysis was carried out for traditional satellite (SAT) and numerical weather prediction (NWP) models with hybrid models. Our findings demonstrate a higher skill score for all of the approaches compared to a smart persistent model and consistently highlight the superiority of the hybrid ensemble model for a short-term prediction window of 1 to 6 h. This research underscores the potential for enhanced accuracy of the hybrid approach to advance short-term solar irradiance forecasting, emphasizing its effectiveness at understanding the intricate interplay of the meteorological variables affecting solar energy generation worldwide. The results of this investigation carry noteworthy implications for advancing solar energy systems, thereby supporting the sustainable integration of renewable energy sources into the electrical grid.

Suggested Citation

  • Jayesh Thaker & Robert Höller & Mufaddal Kapasi, 2024. "Short-Term Solar Irradiance Prediction with a Hybrid Ensemble Model Using EUMETSAT Satellite Images," Energies, MDPI, vol. 17(2), pages 1-32, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:329-:d:1315874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/329/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:329-:d:1315874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.