IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3787-d1447717.html
   My bibliography  Save this article

A Doublet State Palladium(I) N-Heterocyclic Carbene Complex as a Dopant and Stabilizer for Improved Photostability in Organic Solar Cells

Author

Listed:
  • Aliah El Astal-Quirós

    (CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
    DGTCSI-ISCTI (Direzione Generale per le Tecnologie delle Comunicazioni e la Sicurezza Informatica-Istituto Superiore delle Comunicazioni e delle Tecnologie Dell’informazione), Ministero dell’Impresa e del Made in Italy (MIMIt), Viale America, 201, 00144 Rome, Italy
    Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Rio”, Universidad de Alcalá, Campus Universitario, 28805 Alcala de Henares, Spain)

  • Valentina Carrarini

    (CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy)

  • Francesca Zarotti

    (CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy)

  • Atiq Ur Rahman

    (CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy)

  • Agustí Lledós

    (Department de Química, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain)

  • Cristina G. Yebra

    (Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Rio”, Universidad de Alcalá, Campus Universitario, 28805 Alcala de Henares, Spain)

  • Ernesto de Jesús

    (Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Rio”, Universidad de Alcalá, Campus Universitario, 28805 Alcala de Henares, Spain)

  • Andrea Reale

    (CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy)

Abstract

The effect of doublet state metalloradical complex in a solar cell inside the common active layer poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PC 60 BM) is explored. In this work, it is demonstrated that the role of the bis-[1,3-bis-(2,6-diisopropylphenyl)-4,5-dichloroimidazol-2-ylidene]palladium(I) hexafluoridophosphate dopant, [Pd(IPr Cl ) 2 ][PF 6 ], is crucial because the presence of a stable unpaired electron in the molecule significantly improves the optoelectronic performance of the device. We f the optimal concentration of this molecule in the active layer and demonstrate that the presence of this additive in the active layer helps to significantly improve the morphology of the device. The improvements in optoelectronic and morphological parameters are associated with a remarkable increase in photocurrent generation due to more favorable mechanisms of charge separation at the donor/acceptor (D/A) interfaces of the active layer and reduced recombinations. Moreover, the presence of this additive improves the stability of the unencapsulated solar cell against photochemical degradation produced by sunlight.

Suggested Citation

  • Aliah El Astal-Quirós & Valentina Carrarini & Francesca Zarotti & Atiq Ur Rahman & Agustí Lledós & Cristina G. Yebra & Ernesto de Jesús & Andrea Reale, 2024. "A Doublet State Palladium(I) N-Heterocyclic Carbene Complex as a Dopant and Stabilizer for Improved Photostability in Organic Solar Cells," Energies, MDPI, vol. 17(15), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3787-:d:1447717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthew N. Hopkinson & Christian Richter & Michael Schedler & Frank Glorius, 2014. "An overview of N-heterocyclic carbenes," Nature, Nature, vol. 510(7506), pages 485-496, June.
    2. Yiru Sun & Noel C. Giebink & Hiroshi Kanno & Biwu Ma & Mark E. Thompson & Stephen R. Forrest, 2006. "Management of singlet and triplet excitons for efficient white organic light-emitting devices," Nature, Nature, vol. 440(7086), pages 908-912, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Liu & Yan Fu & Ben Zhong Tang & Zujin Zhao, 2022. "All-fluorescence white organic light-emitting diodes with record-beating power efficiencies over 130 lm W‒1 and small roll-offs," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Manli Huang & Zhanxiang Chen & Jingsheng Miao & Siyuan He & Wei Yang & Zhongyan Huang & Yang Zou & Shaolong Gong & Yao Tan & Chuluo Yang, 2024. "Harmonization of rapid triplet up-conversion and singlet radiation enables efficient and stable white OLEDs," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yuxing Cai & Yuxin Zhao & Kai Tang & Hong Zhang & Xueling Mo & Jiean Chen & Yong Huang, 2024. "Amide C–N bonds activation by A new variant of bifunctional N-heterocyclic carbene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Qingyun Wang & Shuquan Wu & Juan Zou & Xuyang Liang & Chengli Mou & Pengcheng Zheng & Yonggui Robin Chi, 2023. "NHC-catalyzed enantioselective access to β-cyano carboxylic esters via in situ substrate alternation and release," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xin Li & Yi-Lin Wang & Chan Chen & Yan-Yan Ren & Ying-Feng Han, 2022. "A platform for blue-luminescent carbon-centered radicals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Rui Zhou & Laizhi Sui & Xinbao Liu & Kaikai Liu & Dengyang Guo & Wenbo Zhao & Shiyu Song & Chaofan Lv & Shu Chen & Tianci Jiang & Zhe Cheng & Sheng Meng & Chongxin Shan, 2023. "Multiphoton excited singlet/triplet mixed self-trapped exciton emission," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Xiaochen Wang & Rongxin Yang & Binbing Zhu & Yuxiu Liu & Hongjian Song & Jianyang Dong & Qingmin Wang, 2023. "Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Zi-Jing Zhang & Nicolas Jacob & Shilpa Bhatia & Philipp Boos & Xinran Chen & Joshua C. DeMuth & Antonis M. Messinis & Becky Bongsuiru Jei & João C. A. Oliveira & Aleksa Radović & Michael L. Neidig & , 2024. "Iron-catalyzed stereoselective C–H alkylation for simultaneous construction of C–N axial and C-central chirality," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Hai-Ying Wang & Xin-Han Wang & Bang-An Zhou & Chun-Lin Zhang & Song Ye, 2023. "Ketones from aldehydes via alkyl C(sp3)−H functionalization under photoredox cooperative NHC/palladium catalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Liang Ling & Chenyang Hu & Linhong Long & Xue Zhang & Lixing Zhao & Liu Leo Liu & Hui Chen & Meiming Luo & Xiaoming Zeng, 2023. "Chromium-catalyzed stereodivergent E- and Z-selective alkyne hydrogenation controlled by cyclic (alkyl)(amino)carbene ligands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Runbo Pei & Wenju Chang & Liancheng He & Tao Wang & Yue Zhao & Yong Liang & Xinping Wang, 2024. "Main-group compounds selectively activate natural gas alkanes under room temperature and atmospheric pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    13. Jiayan Li & Ziyang Dong & Yang Chen & Zhanhui Yang & Xinen Yan & Meng Wang & Chenyang Li & Changgui Zhao, 2024. "N-Heterocyclic carbene-catalyzed enantioselective synthesis of planar-chiral cyclophanes via dynamic kinetic resolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Peng Zhou & Wenchang Li & Jianyong Lan & Tingshun Zhu, 2022. "Electroredox carbene organocatalysis with iodide as promoter," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Zhen Lei & Mizuki Endo & Hitoshi Ube & Takafumi Shiraogawa & Pei Zhao & Koichi Nagata & Xiao-Li Pei & Tomoya Eguchi & Toshiaki Kamachi & Masahiro Ehara & Takeaki Ozawa & Mitsuhiko Shionoya, 2022. "N-Heterocyclic carbene-based C-centered Au(I)-Ag(I) clusters with intense phosphorescence and organelle-selective translocation in cells," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Mingrui Li & Yingtao Wu & Xiao Song & Jiaqiong Sun & Zuxiao Zhang & Guangfan Zheng & Qian Zhang, 2024. "Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3787-:d:1447717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.