IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59781-4.html
   My bibliography  Save this article

Desymmetric esterification catalysed by bifunctional chiral N-heterocyclic carbenes provides access to inherently chiral calix[4]arenes

Author

Listed:
  • Vojtěch Dočekal

    (Charles University)

  • Ladislav Lóška

    (Charles University)

  • Adam Kurčina

    (Charles University)

  • Ivana Císařová

    (Charles University)

  • Jan Veselý

    (Charles University)

Abstract

Calix[4]arenes display inherent chirality, with broad applications in synthetic and medicinal chemistry and in materials sciences. However, their use is hindered by their limited synthetic accessibility, primarily due to the lack of enantioselective methods for preparing chiral calix[4]arenes with an ABCC substitution pattern. Here, we address this challenge by presenting a simple, efficient, and metal-free protocol for organocatalytic desymmetrisation of prochiral diformylcalix[4]arenes. Through this highly effective and sustainable approach, we synthesize structurally unique products in gram-scale reactions. Accordingly, this method facilitates extensive post-functionalisations of the carbonyl groups, including for organocatalyst development. Furthermore, our experimental mechanistic studies demonstrate that desymmetrisation determines enantiocontrol in esterification reactions catalysed by N-heterocyclic carbenes. These findings underscore the broad potential of this method for providing versatile access to inherently chiral calix[4]arenes with an ABCC substitution pattern while offering a valuable platform for asymmetric molecular recognition and catalysis.

Suggested Citation

  • Vojtěch Dočekal & Ladislav Lóška & Adam Kurčina & Ivana Císařová & Jan Veselý, 2025. "Desymmetric esterification catalysed by bifunctional chiral N-heterocyclic carbenes provides access to inherently chiral calix[4]arenes," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59781-4
    DOI: 10.1038/s41467-025-59781-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59781-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59781-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jianjian Liu & Mali Zhou & Rui Deng & Pengcheng Zheng & Yonggui Robin Chi, 2022. "Chalcogen bond-guided conformational isomerization enables catalytic dynamic kinetic resolution of sulfoxides," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Matthew N. Hopkinson & Christian Richter & Michael Schedler & Frank Glorius, 2014. "An overview of N-heterocyclic carbenes," Nature, Nature, vol. 510(7506), pages 485-496, June.
    3. Vojtěch Dočekal & Filip Koucký & Ivana Císařová & Jan Veselý, 2024. "Organocatalytic desymmetrization provides access to planar chiral [2.2]paracyclophanes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Yuxing Cai & Yuxin Zhao & Kai Tang & Hong Zhang & Xueling Mo & Jiean Chen & Yong Huang, 2024. "Amide C–N bonds activation by A new variant of bifunctional N-heterocyclic carbene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonia Bajo & Enrique Soto & Marta Fernández-Buenestado & Joaquín López-Serrano & Jesús Campos, 2024. "A low-coordinate platinum(0)-germylene for E–H bond activation and catalytic hydrodehalogenation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jennifer Klaucke & Navutheya Sinthathurai & Christopher Golz & Oliver P. E. Townrow & Malte Fischer, 2025. "Carbene-activated stannylenes to access selective C(sp3)–H bond scission at the steric limit," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    3. Lei Zhang & Zhe Chen & Zhenpeng Liu & Jun Bu & Wenxiu Ma & Chen Yan & Rui Bai & Jin Lin & Qiuyu Zhang & Junzhi Liu & Tao Wang & Jian Zhang, 2021. "Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Aliah El Astal-Quirós & Valentina Carrarini & Francesca Zarotti & Atiq Ur Rahman & Agustí Lledós & Cristina G. Yebra & Ernesto de Jesús & Andrea Reale, 2024. "A Doublet State Palladium(I) N-Heterocyclic Carbene Complex as a Dopant and Stabilizer for Improved Photostability in Organic Solar Cells," Energies, MDPI, vol. 17(15), pages 1-19, August.
    5. Meihui Liu & Xiao Han & Hao Chen & Qian Peng & Hui Huang, 2023. "A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Shi-Qi Liu & Wei Xiong & Ji-Chao Huang & Xuan Jiang & Wenhan Xu & Zhihan Zhang & Ying Cheng & Liang-Qiu Lu & Ke Gao & Wen-Jing Xiao, 2025. "Construction of planar chiral [2,2]paracyclophanes via photoinduced cobalt-catalyzed desymmetric addition," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    7. Wenbo Yuan & Tianyu Huang & Jianping Zhou & Man-Chung Tang & Dongdong Zhang & Lian Duan, 2025. "High-efficiency and long-lifetime deep-blue phosphorescent OLEDs using deuterated exciplex-forming host," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Yuxing Cai & Yuxin Zhao & Kai Tang & Hong Zhang & Xueling Mo & Jiean Chen & Yong Huang, 2024. "Amide C–N bonds activation by A new variant of bifunctional N-heterocyclic carbene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Qingyun Wang & Shuquan Wu & Juan Zou & Xuyang Liang & Chengli Mou & Pengcheng Zheng & Yonggui Robin Chi, 2023. "NHC-catalyzed enantioselective access to β-cyano carboxylic esters via in situ substrate alternation and release," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Xin Li & Yi-Lin Wang & Chan Chen & Yan-Yan Ren & Ying-Feng Han, 2022. "A platform for blue-luminescent carbon-centered radicals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Xiaochen Wang & Rongxin Yang & Binbing Zhu & Yuxiu Liu & Hongjian Song & Jianyang Dong & Qingmin Wang, 2023. "Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Zi-Jing Zhang & Nicolas Jacob & Shilpa Bhatia & Philipp Boos & Xinran Chen & Joshua C. DeMuth & Antonis M. Messinis & Becky Bongsuiru Jei & João C. A. Oliveira & Aleksa Radović & Michael L. Neidig & , 2024. "Iron-catalyzed stereoselective C–H alkylation for simultaneous construction of C–N axial and C-central chirality," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Hai-Ying Wang & Xin-Han Wang & Bang-An Zhou & Chun-Lin Zhang & Song Ye, 2023. "Ketones from aldehydes via alkyl C(sp3)−H functionalization under photoredox cooperative NHC/palladium catalysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Minlong Wang & Jiaman Hou & Hainam Do & Chao Wang & Xiaohe Zhang & Ying Du & Qixin Dong & Lijun Wang & Ke Ni & Fazheng Ren & Jie An, 2024. "Intramolecular chalcogen bonding activated SuFEx click chemistry for efficient organic-inorganic linking," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Liang Ling & Chenyang Hu & Linhong Long & Xue Zhang & Lixing Zhao & Liu Leo Liu & Hui Chen & Meiming Luo & Xiaoming Zeng, 2023. "Chromium-catalyzed stereodivergent E- and Z-selective alkyne hydrogenation controlled by cyclic (alkyl)(amino)carbene ligands," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Shao-Qing Shi & Chen-Chang Cui & Lin-Lin Xu & Jin-Peng Zhang & Wen-Juan Hao & Jianyi Wang & Bo Jiang, 2024. "Enantioselective synthesis of saddle-shaped eight-membered lactones with inherent chirality via organocatalytic high-order annulation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Soumen Barik & Sowmya Shree Ranganathappa & Akkattu T. Biju, 2024. "N-heterocyclic carbene-catalyzed atroposelective synthesis of N-Aryl phthalimides and maleimides via activation of carboxylic acids," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Runbo Pei & Wenju Chang & Liancheng He & Tao Wang & Yue Zhao & Yong Liang & Xinping Wang, 2024. "Main-group compounds selectively activate natural gas alkanes under room temperature and atmospheric pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    19. Jiayan Li & Ziyang Dong & Yang Chen & Zhanhui Yang & Xinen Yan & Meng Wang & Chenyang Li & Changgui Zhao, 2024. "N-Heterocyclic carbene-catalyzed enantioselective synthesis of planar-chiral cyclophanes via dynamic kinetic resolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Peng Zhou & Wenchang Li & Jianyong Lan & Tingshun Zhu, 2022. "Electroredox carbene organocatalysis with iodide as promoter," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59781-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.