IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2571-d1402253.html
   My bibliography  Save this article

Greenhouse Gas Emissions of a Hydrogen Engine for Automotive Application through Life-Cycle Assessment

Author

Listed:
  • Antonella Accardo

    (Department of Energy, Interdepartmental Center for Automotive Research and Sustainable Mobility—CARS@PoliTO, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

  • Trentalessandro Costantino

    (Department of Energy, Interdepartmental Center for Automotive Research and Sustainable Mobility—CARS@PoliTO, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

  • Gianfranco Malagrinò

    (DUMAREY Automotive Italia S.p.A., Corso Castelfidardo, 36, 10129 Turin, Italy)

  • Michele Pensato

    (DUMAREY Automotive Italia S.p.A., Corso Castelfidardo, 36, 10129 Turin, Italy)

  • Ezio Spessa

    (Department of Energy, Interdepartmental Center for Automotive Research and Sustainable Mobility—CARS@PoliTO, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy)

Abstract

Hydrogen combustion engine vehicles have the potential to rapidly enter the market and reduce greenhouse gas emissions (GHG) compared to conventional engines. The ability to provide a rapid market deployment is linked to the fact that the industry would take advantage of the existing internal combustion engine production chain. The aim of this paper is twofold. First, it aims to develop a methodology for applying life-cycle assessment (LCA) to internal combustion engines to estimate their life-cycle GHG emissions. Also, it aims to investigate the decarbonization potential of hydrogen engines produced by exploiting existing diesel engine technology and assuming diverse hydrogen production routes. The boundary of the LCA is cradle-to-grave, and the assessment is entirely based on primary data. The products under study are two monofuel engines: a hydrogen engine and a diesel engine. The hydrogen engine has been redesigned using the diesel engine as a base. The engines being studied are versatile and can be used for a wide range of uses such as automotive, cogeneration, maritime, off-road, and railway; however, this study focuses on their application in pickup trucks. As part of the redesign process, certain subsystems (e.g., combustion, injection, ignition, exhaust gas recirculation, and exhaust gas aftertreatment) have been modified to make the engine run on hydrogen. Results revealed that employing a hydrogen engine using green hydrogen (i.e., generated from water electrolysis using wind-based electricity) might reduce GHG emission by over 90% compared to the diesel engine This study showed that the benefits of the new hydrogen engine solution outweigh the increase of emissions related to the redesign process, making it a potentially beneficial solution also for reconditioning current and used internal combustion engines.

Suggested Citation

  • Antonella Accardo & Trentalessandro Costantino & Gianfranco Malagrinò & Michele Pensato & Ezio Spessa, 2024. "Greenhouse Gas Emissions of a Hydrogen Engine for Automotive Application through Life-Cycle Assessment," Energies, MDPI, vol. 17(11), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2571-:d:1402253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2571/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2571-:d:1402253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.