IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3051-d1108777.html
   My bibliography  Save this article

Thermal Stability of NASICON-Type Na 3 V 2 (PO 4 ) 3 and Na 4 VMn(PO 4 ) 3 as Cathode Materials for Sodium-ion Batteries

Author

Listed:
  • Ruslan R. Samigullin

    (Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia)

  • Maxim V. Zakharkin

    (Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia)

  • Oleg A. Drozhzhin

    (Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia)

  • Evgeny V. Antipov

    (Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
    Skoltech Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia)

Abstract

The thermal stability of NASICON-type cathode materials for sodium-ion batteries was studied using differential scanning calorimetry (DSC) and in situ high-temperature powder X-ray diffraction (HTPXRD) applied to the electrodes in a pristine or charged state. Na 3 V 2 (PO 4 ) 3 and Na 4 VMn(PO 4 ) 3 were analyzed for their peak temperatures and the exothermic effect values of their decomposition processes, as well as the phase transformations that took place upon heating. The obtained results indicate that Mn-substituted cathode material demonstrates much poorer thermal stability in the charged state, although pristine samples of both materials exhibit similar thermal behavior without any DSC peaks or temperature-induced phase transitions in the studied temperature range. The in situ HTPXRD revealed the amorphization of desodiated Na 4 VMn(PO 4 ) 3 -based electrodes occurring at 150~250 °C.

Suggested Citation

  • Ruslan R. Samigullin & Maxim V. Zakharkin & Oleg A. Drozhzhin & Evgeny V. Antipov, 2023. "Thermal Stability of NASICON-Type Na 3 V 2 (PO 4 ) 3 and Na 4 VMn(PO 4 ) 3 as Cathode Materials for Sodium-ion Batteries," Energies, MDPI, vol. 16(7), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3051-:d:1108777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3051/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guochun Yan & Sathiya Mariyappan & Gwenaelle Rousse & Quentin Jacquet & Michael Deschamps & Renald David & Boris Mirvaux & John William Freeland & Jean-Marie Tarascon, 2019. "Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Yuqi Li & Quan Zhou & Suting Weng & Feixiang Ding & Xingguo Qi & Jiaze Lu & Yu Li & Xiao Zhang & Xiaohui Rong & Yaxiang Lu & Xuefeng Wang & Ruijuan Xiao & Hong Li & Xuejie Huang & Liquan Chen & Yong-S, 2022. "Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries," Nature Energy, Nature, vol. 7(6), pages 511-519, June.
    3. Wen Zhu & Yuesheng Wang & Dongqiang Liu & Vincent Gariépy & Catherine Gagnon & Ashok Vijh & Michel L. Trudeau & Karim Zaghib, 2018. "Application of Operando X-ray Diffractometry in Various Aspects of the Investigations of Lithium/Sodium-Ion Batteries," Energies, MDPI, vol. 11(11), pages 1-41, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Semyon D. Shraer & Nikita D. Luchinin & Ivan A. Trussov & Dmitry A. Aksyonov & Anatoly V. Morozov & Sergey V. Ryazantsev & Anna R. Iarchuk & Polina A. Morozova & Victoria A. Nikitina & Keith J. Steven, 2022. "Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Simranjot K. Sapra & Jayashree Pati & Pravin K. Dwivedi & Suddhasatwa Basu & Jeng‐Kuei Chang & Rajendra S. Dhaka, 2021. "A comprehensive review on recent advances of polyanionic cathode materials in Na‐ion batteries for cost effective energy storage applications," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    4. Francesca De Giorgio & Mattia Gaboardi & Lara Gigli & Sergio Brutti & Catia Arbizzani, 2022. "Deciphering the Interplay between Binders and Electrolytes on the Performance of Li 4 Ti 5 O 12 Electrodes for Li-Ion Batteries," Energies, MDPI, vol. 15(12), pages 1-13, June.
    5. Jiyu Zhang & Yongliang Yan & Xin Wang & Yanyan Cui & Zhengfeng Zhang & Sen Wang & Zhengkun Xie & Pengfei Yan & Weihua Chen, 2023. "Bridging multiscale interfaces for developing ionically conductive high-voltage iron sulfate-containing sodium-based battery positive electrodes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Xiaotan Zhang & Jiangxu Li & Yanfen Liu & Bingan Lu & Shuquan Liang & Jiang Zhou, 2024. "Single [0001]-oriented zinc metal anode enables sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3051-:d:1108777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.