IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2813-d1100563.html
   My bibliography  Save this article

An Improved Over-Speed Deloading Control of Wind Power Systems for Primary Frequency Regulation Considering Turbulence Characteristics

Author

Listed:
  • Xiaolian Zhang

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Baocong Lin

    (School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Ke Xu

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Yangfei Zhang

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Sipeng Hao

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Qi Hu

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

Abstract

Wind power systems participating in primary frequency regulation have become a novel trend. In order to solve the problem of the over-speed deloading (OSD) control of wind power systems failing to provide reserved capacity for primary frequency regulation while under turbulent winds, this paper analyzes the influence mechanism of turbulence characteristics on the OSD control and the relationship between the reserve capacity of OSD control and the deloading power coefficient under turbulent wind speeds, while also quantifying the relationship between the turbulence characteristic index and deloading power coefficient. The range of the deloading power coefficient is obtained accordingly, based on which improved OSD control is proposed to dynamically optimize the deloading power coefficient according to the turbulence characteristics, which improves the frequency regulation performance of wind power systems under turbulent wind speed. According to the simulations and experimental results, the improved method proposed in this paper has good effectiveness and superiority in frequency regulation effect and rotor speed performance.

Suggested Citation

  • Xiaolian Zhang & Baocong Lin & Ke Xu & Yangfei Zhang & Sipeng Hao & Qi Hu, 2023. "An Improved Over-Speed Deloading Control of Wind Power Systems for Primary Frequency Regulation Considering Turbulence Characteristics," Energies, MDPI, vol. 16(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2813-:d:1100563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang Lu & Oscar Saborío-Romano & Nicolaos A. Cutululis, 2022. "Frequency Control in Power Systems with Large Share of Wind Energy," Energies, MDPI, vol. 15(5), pages 1-12, March.
    2. Xiaolian Zhang & Can Huang & Sipeng Hao & Fan Chen & Jingjing Zhai, 2016. "An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences," Energies, MDPI, vol. 9(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    2. Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
    3. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    4. SungHoon Lim & Seung-Mook Baek & Jung-Wook Park, 2022. "Selection of Inertial and Power Curtailment Control Methods for Wind Power Plants to Enhance Frequency Stability," Energies, MDPI, vol. 15(7), pages 1-14, April.
    5. Habib Benbouhenni & Zinelaabidine Boudjema & Nicu Bizon & Phatiphat Thounthong & Noureddine Takorabet, 2022. "Direct Power Control Based on Modified Sliding Mode Controller for a Variable-Speed Multi-Rotor Wind Turbine System Using PWM Strategy," Energies, MDPI, vol. 15(10), pages 1-25, May.
    6. Ying Zhu & Ming Cheng & Haixiang Zang, 2017. "Sensorless Control for the EVT-Based New Dual Power Flow Wind Energy Conversion System," Energies, MDPI, vol. 10(7), pages 1-16, June.
    7. Dejian Yang & Moses Kang & Eduard Muljadi & Wenzhong Gao & Junhee Hong & Jaeseok Choi & Yong Cheol Kang, 2017. "Short-Term Frequency Response of a DFIG-Based Wind Turbine Generator for Rapid Frequency Stabilization," Energies, MDPI, vol. 10(11), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2813-:d:1100563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.