IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2778-d1099593.html
   My bibliography  Save this article

Finite Element Study of Electrical MHD Williamson Nanofluid Flow under the Effects of Frictional Heating in the View of Viscous Dissipation

Author

Listed:
  • Muhammad Shoaib Arif

    (Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
    Department of Mathematics, Air University, PAF Complex E-9, Islamabad 44000, Pakistan)

  • Wasfi Shatanawi

    (Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
    Department of Medical Research, China Medical University, Taichung 40402, Taiwan
    Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan)

  • Yasir Nawaz

    (Department of Mathematics, Air University, PAF Complex E-9, Islamabad 44000, Pakistan)

Abstract

This study addresses heat and mass transfer of electrical magnetohydrodynamics (MHD) Williamson fluid flow over the moving sheet. The mathematical model for the considered flow phenomenon is expressed in a set of partial differential equations. Later, linear and nonlinear ordinary differential equations (ODEs) are obtained. The finite element method tackles a reduced system of ODEs with boundary conditions. Galerkin weighted residuals and constructs of weak formulations constitute the basis of this method. An iterative procedure is considered for handling nonlinear terms in a given system of ODEs. Some results acquired using the finite element method are compared with those reported in previous research via the Matlab solver bvp4c in order to validate the obtained solutions of ODEs. It is seen that the velocity profile is decayed by enhancing the Wiesenberg number. The finite element method also converges to an accurate solution by increasing the number of elements, whereas Matlab solver bvp4c produces accurate results on small grid points. Our intention is for this paper to serve as a guide for academics in the future who will be tasked with addressing pressing issues in the field of industrial and engineering enclosures.

Suggested Citation

  • Muhammad Shoaib Arif & Wasfi Shatanawi & Yasir Nawaz, 2023. "Finite Element Study of Electrical MHD Williamson Nanofluid Flow under the Effects of Frictional Heating in the View of Viscous Dissipation," Energies, MDPI, vol. 16(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2778-:d:1099593
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2778/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2778/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stanford Shateyi & Sandile Sydney Motsa, 2009. "Thermal Radiation Effects on Heat and Mass Transfer over an Unsteady Stretching Surface," Mathematical Problems in Engineering, Hindawi, vol. 2009, pages 1-13, January.
    2. Doaa Rizk & Asad Ullah & Ikramullah & Samia Elattar & Khalid Abdulkhaliq M. Alharbi & Mohammad Sohail & Rajwali Khan & Alamzeb Khan & Nabil Mlaiki, 2022. "Impact of the KKL Correlation Model on the Activation of Thermal Energy for the Hybrid Nanofluid (GO+ZnO+Water) Flow through Permeable Vertically Rotating Surface," Energies, MDPI, vol. 15(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asad Ullah & Nahid Fatima & Khalid Abdulkhaliq M. Alharbi & Samia Elattar & Ikramullah & Waris Khan, 2023. "A Numerical Analysis of the Hybrid Nanofluid (Ag+TiO 2 +Water) Flow in the Presence of Heat and Radiation Fluxes," Energies, MDPI, vol. 16(3), pages 1-15, January.
    2. Beom-Jin Kim & Jae-Hong Hwang & Byunghyun Kim, 2022. "FLOW-3D Model Development for the Analysis of the Flow Characteristics of Downstream Hydraulic Structures," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    3. Hari Mohan Srivastava & Ziad Khan & Pshtiwan Othman Mohammed & Eman Al-Sarairah & Muhammad Jawad & Rashid Jan, 2022. "Heat Transfer of Buoyancy and Radiation on the Free Convection Boundary Layer MHD Flow across a Stretchable Porous Sheet," Energies, MDPI, vol. 16(1), pages 1-23, December.
    4. Iskandar Waini & Najiyah Safwa Khashi’ie & Abdul Rahman Mohd Kasim & Nurul Amira Zainal & Khairum Bin Hamzah & Norihan Md Arifin & Ioan Pop, 2022. "Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk," Mathematics, MDPI, vol. 10(10), pages 1-20, May.
    5. Muhammad Shoaib Arif & Wasfi Shatanawi & Yasir Nawaz, 2023. "Modified Finite Element Study for Heat and Mass Transfer of Electrical MHD Non-Newtonian Boundary Layer Nanofluid Flow," Mathematics, MDPI, vol. 11(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2778-:d:1099593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.