IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1106-d1041014.html
   My bibliography  Save this article

A Global Tracking Sensorless Adaptive PI-PBC Design for Output Voltage Regulation in a Boost Converter Feeding a DC Microgrid

Author

Listed:
  • Walter Gil-González

    (Department of Electrical Engineering, Universidad Tecnológica de Pereira, Pereira 660003, Colombia)

  • Oscar Danilo Montoya

    (Grupo de Compatibilidad e Interferencia Electromagnética, Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
    Laboratorio Inteligente de Energía, Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

  • Sebastián Riffo

    (Department of Electrical Engineering, Universidad de Talca, Curicó 3340000, Chile)

  • Carlos Restrepo

    (Department of Electrical Engineering, Universidad de Talca, Curicó 3340000, Chile
    Principal Investigator Millennium Institute on Green Ammonia as Energy Vector (MIGA), Santiago 7820436, Chile)

  • Javier Muñoz

    (Department of Electrical Engineering, Universidad de Talca, Curicó 3340000, Chile)

Abstract

The problem of the output voltage regulation in a DC-DC boost converter feeding a DC microgrid is addressed in this research via the passivity-based control theory with a proportional–integral action (PI-PBC). Two external input estimators were implemented in conjunction with the proposed controller to make it sensorless and adaptive. The first estimator corresponds to the immersion & invariance (I&I) approach applied to calculate the expected value of the DC load, which is modeled as an unknown DC current. The second estimator is based on the disturbance–observer (DO) approach, which reaches the value of the voltage input. The main advantage of both estimators is that these ensure exponential convergence under steady-state operating conditions, and their parametrization only requires the definition of an integral gain. A comparative analysis with simulations demonstrates that the proposed PI-PBC approach is effective in regulating/controlling the voltage profile in unknown DC loads as compared to the adaptive sliding mode controller. Experimental validations have demonstrated that the proposed PI-PBC approach, in conjunction with the I&I and the DO estimators, allowed regulation of the voltage output profile in the terminals of the DC load with asymptotic stability properties and fast convergence times (1.87 ms) and acceptably overshoots (6.1%) when the voltage input varies its magnitude (from 10 to 12 V and from 10 to 8 V) considering that the DC load changed with a square waveform between 1 and 2 A with 100 Hz.

Suggested Citation

  • Walter Gil-González & Oscar Danilo Montoya & Sebastián Riffo & Carlos Restrepo & Javier Muñoz, 2023. "A Global Tracking Sensorless Adaptive PI-PBC Design for Output Voltage Regulation in a Boost Converter Feeding a DC Microgrid," Energies, MDPI, vol. 16(3), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1106-:d:1041014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joao L. Afonso & Mohamed Tanta & José Gabriel Oliveira Pinto & Luis F. C. Monteiro & Luis Machado & Tiago J. C. Sousa & Vitor Monteiro, 2021. "A Review on Power Electronics Technologies for Power Quality Improvement," Energies, MDPI, vol. 14(24), pages 1-71, December.
    2. Luis Fernando Grisales-Noreña & Carlos Andrés Ramos-Paja & Daniel Gonzalez-Montoya & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2020. "Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivo Araújo & Leonel J. R. Nunes & António Curado, 2023. "Preliminary Approach for the Development of Sustainable University Campuses: A Case Study Based on the Mitigation of Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Daniel A. Salas & Paulina Criollo & Angel D. Ramirez, 2021. "The Role of Higher Education Institutions in the Implementation of Circular Economy in Latin America," Sustainability, MDPI, vol. 13(17), pages 1-27, August.
    3. Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Ricardo Alberto Hincapié-Isaza & Mauricio Granada Echeverri & Alberto-Jesus Perea-Moreno, 2021. "Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    4. Andrés Alfonso Rosales-Muñoz & Jhon Montano & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Fabio Andrade, 2022. "Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method," Sustainability, MDPI, vol. 14(20), pages 1-32, October.
    5. Oscar Danilo Montoya & Federico Martin Serra & Walter Gil-González, 2023. "A Robust Conic Programming Approximation to Design an EMS in Monopolar DC Networks with a High Penetration of PV Plants," Energies, MDPI, vol. 16(18), pages 1-17, September.
    6. Lutfu Saribulut & Gorkem Ok & Arman Ameen, 2023. "A Case Study on National Electricity Blackout of Turkey," Energies, MDPI, vol. 16(11), pages 1-20, May.
    7. Dong Yan & Lijun Hang & Yuanbin He & Zhen He & Pingliang Zeng, 2022. "An Accurate Switching Transient Analytical Model for GaN HEMT under the Influence of Nonlinear Parameters," Energies, MDPI, vol. 15(8), pages 1-18, April.
    8. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    9. Krzysztof Sozanski & Pawel Szczesniak, 2023. "Advanced Control Algorithm for Three-Phase Shunt Active Power Filter Using Sliding DFT," Energies, MDPI, vol. 16(3), pages 1-17, February.
    10. Khaled Chahine & Mohamad Tarnini & Nazih Moubayed & Abdallah El Ghaly, 2023. "Power Quality Enhancement of Grid-Connected Renewable Systems Using a Matrix-Pencil-Based Active Power Filter," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    11. Marcin Maciążek, 2022. "Active Power Filters and Power Quality," Energies, MDPI, vol. 15(22), pages 1-4, November.
    12. Andrzej Szromba, 2023. "Improving the Efficiency of the Shunt Active Power Filter Acting with the Use of the Hysteresis Current Control Technique," Energies, MDPI, vol. 16(10), pages 1-16, May.
    13. Francisco G. Montoya & Alberto-Jesus Perea-Moreno, 2020. "Environmental Energy Sustainability at Universities," Sustainability, MDPI, vol. 12(21), pages 1-3, November.
    14. Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Oscar Danilo Montoya, 2023. "An Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizer," Energies, MDPI, vol. 16(3), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1106-:d:1041014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.