IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4770-d1173051.html
   My bibliography  Save this article

Research on Coordinated Control Strategy of DFIG-ES System Based on Fuzzy Control

Author

Listed:
  • Jianghong Chen

    (College of Electrical and New Energy, Three Gorges University, Yichang 443002, China)

  • Teng Yuan

    (College of Electrical and New Energy, Three Gorges University, Yichang 443002, China)

  • Xuelian Li

    (College of Electrical and New Energy, Three Gorges University, Yichang 443002, China)

  • Weiliang Li

    (College of Electrical and New Energy, Three Gorges University, Yichang 443002, China)

  • Ximu Wang

    (College of Electrical and New Energy, Three Gorges University, Yichang 443002, China)

Abstract

As the penetration rate of wind power systems is rising, which causes the overall system’s inertia to decline, the power system’s capacity to regulate frequency will be negatively affected. Therefore, this paper investigates the inertia control of doubly fed induction generation, and an energy storage system is installed in the wind farm to respond to the frequency deviation. First, a fuzzy control-based virtual inertia adaptive control strategy is presented. The goal of dynamic adjustment of the virtual inertia coefficient is realized by taking into account the uncertain factors of wind speed and frequency change rate. A recovery strategy based on the energy storage system’s level of charge is employed to prevent overcharging and over-discharging of the battery. Then, a weight factor based on frequency deviation is introduced to combine the droop output of the energy storage system with the virtual inertia output of the doubly fed induction generation, and the joint output mode of the wind storage system is determined in each stage of primary frequency regulation. Finally, the simulation verification is performed using the wind storage system simulation model created by MATLAB. The comparison results with other control methods prove that the proposed method is effective.

Suggested Citation

  • Jianghong Chen & Teng Yuan & Xuelian Li & Weiliang Li & Ximu Wang, 2023. "Research on Coordinated Control Strategy of DFIG-ES System Based on Fuzzy Control," Energies, MDPI, vol. 16(12), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4770-:d:1173051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sijia Tu & Bingda Zhang & Xianglong Jin, 2019. "Research on DFIG-ES System to Enhance the Fast-Frequency Response Capability of Wind Farms," Energies, MDPI, vol. 12(18), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dezhi Ma & Wenyi Li, 2022. "Wind-Storage Combined Virtual Inertial Control Based on Quantization and Regulation Decoupling of Active Power Increments," Energies, MDPI, vol. 15(14), pages 1-20, July.
    2. Dillan Kyle Ockhuis & Maarten Kamper, 2021. "Potential of Slip Synchronous Wind Turbine Systems: Grid Support and Mechanical Load Mitigation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    3. Yicong Wang & Chang Liu & Zhiwei Liu & Tingtao Wang & Fangchao Ke & Dongjun Yang & Dongyin Zhang & Shihong Miao, 2023. "A Hierarchical Cooperative Frequency Regulation Control Strategy of Wind-Storage-Load in a Microgrid Based on Model Prediction," Energies, MDPI, vol. 16(4), pages 1-17, February.
    4. Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4770-:d:1173051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.