IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4014-d1143829.html
   My bibliography  Save this article

Description of Pressure-Multiplying Efficiency Model Creation Used for Pressure Intensifiers Based on Rotary Flow Dividers

Author

Listed:
  • Jakub Milan Hradecký

    (Department of Designing and Machine Components, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, 160 00 Prague, Czech Republic
    R&D Department, Hydraulic Division, Jihostroj a.s., Budějovická 148, 382 32 Velešín, Czech Republic)

Abstract

Pressure intensifiers have their utilization in hydraulic circuits, when there is a need for pressure multiplication for some period of time. Using intensifiers provides energy savings, cost reductions or smaller dimensioning. This article is about a pressure intensifier based on rotary flow dividers. Its functioning is evaluated by its pressure-multiplying efficiency. This efficiency is always calculated from values gained from measurements. However, it would be very convenient to be able to evaluate these types of intensifiers without a need to provide specific measurements for every type of intensifier and rather calculate their efficiency using the general parameters of a hydraulic circuit. Therefore, this article is about the description of a model which calculates the pressure-multiplying efficiency only with two input values: the pressure and the speed of an intensifier. Final derived formulas are also used for the efficiency prediction at pressure levels never measured before and then verified by measurements.

Suggested Citation

  • Jakub Milan Hradecký, 2023. "Description of Pressure-Multiplying Efficiency Model Creation Used for Pressure Intensifiers Based on Rotary Flow Dividers," Energies, MDPI, vol. 16(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4014-:d:1143829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangbeom Woo & Timothy Opperwall & Andrea Vacca & Manuel Rigosi, 2017. "Modeling Noise Sources and Propagation in External Gear Pumps," Energies, MDPI, vol. 10(7), pages 1-20, July.
    2. Gianluca Marinaro & Emma Frosina & Adolfo Senatore, 2021. "A Numerical Analysis of an Innovative Flow Ripple Reduction Method for External Gear Pumps," Energies, MDPI, vol. 14(2), pages 1-22, January.
    3. Jakub Milan Hradecký & Antonín Bubák & Martin Dub, 2022. "Evaluation Methodology of Rotary Flow Dividers Used as Pressure Intensifiers with Creation of a New Pressure Multiplying Efficiency," Energies, MDPI, vol. 15(6), pages 1-14, March.
    4. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2021. "Analysis of the Energy Efficiency Improvement in a Load-Sensing Hydraulic System Built on the ISO Plate," Energies, MDPI, vol. 14(20), pages 1-14, October.
    5. Lukasz Stawinski & Justyna Skowronska & Andrzej Kosucki, 2021. "Energy Efficiency and Limitations of the Methods of Controlling the Hydraulic Cylinder Piston Rod under Various Load Conditions," Energies, MDPI, vol. 14(23), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Milan Hradecký & Antonín Bubák & Martin Dub, 2022. "Evaluation Methodology of Rotary Flow Dividers Used as Pressure Intensifiers with Creation of a New Pressure Multiplying Efficiency," Energies, MDPI, vol. 15(6), pages 1-14, March.
    2. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    3. Valeriy Sanchugov & Pavel Rekadze, 2022. "New Method to Determine the Dynamic Fluid Flow Rate at the Gear Pump Outlet," Energies, MDPI, vol. 15(9), pages 1-29, May.
    4. Lasse Schmidt & Kenneth Vorbøl Hansen, 2022. "Electro-Hydraulic Variable-Speed Drive Networks—Idea, Perspectives, and Energy Saving Potentials," Energies, MDPI, vol. 15(3), pages 1-33, February.
    5. Sangbeom Woo & Andrea Vacca, 2020. "Experimental Characterization and Evaluation of the Vibroacoustic Field of Hydraulic Pumps: The Case of an External Gear Pump," Energies, MDPI, vol. 13(24), pages 1-26, December.
    6. Alessandro Ferrari & Paola Fresia & Massimo Rundo & Oscar Vento & Pietro Pizzo, 2022. "Experimental Measurement and Numerical Validation of the Flow Ripple in Internal Gear Pumps," Energies, MDPI, vol. 15(24), pages 1-15, December.
    7. Timm Hieronymus & Thomas Lobsinger & Gunther Brenner, 2021. "A Combined CFD-FEM Approach to Predict Fluid-Borne Vibrations and Noise Radiation of a Rotary Vane Pump," Energies, MDPI, vol. 14(7), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4014-:d:1143829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.