IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6639-d463218.html
   My bibliography  Save this article

Experimental Characterization and Evaluation of the Vibroacoustic Field of Hydraulic Pumps: The Case of an External Gear Pump

Author

Listed:
  • Sangbeom Woo

    (Maha Fluid Power Research Center, Purdue University, 1500 Kepner dr., Lafayette, IN 47905, USA)

  • Andrea Vacca

    (Maha Fluid Power Research Center, Purdue University, 1500 Kepner dr., Lafayette, IN 47905, USA)

Abstract

This paper presents the experimental characterization of the vibroacoustic fields and the evaluation of noise performances of hydraulic pumps. Research on hydraulic pump noise has traditionally focused on the fluid-borne noise sources, and very often the analyses of vibration and noise have been performed focusing on a few local points. This trend results in the lack of investigation on the overall behaviors of vibroacoustic fields of hydraulic pumps, and it has been one of the obstacles to understand the complete mechanisms of noise generation. Moreover, despite the existence of the ISO standards for the determination of noise levels, diverse metrics have been used for the evaluation of noise performances of the pumps, but the adequacy of these metrics has not been carefully examined. In this respect, this paper aims at introducing a way to characterize and interpret the measured vibroacoustic field and providing proper methods which are also capable of applying the ISO standards for the fair assessment of pump noise performances. For the characterization of the vibroacoustic field, operational deflection shapes (ODS) and corresponding radiated sound fields are visualized at harmonics of the pumping frequency by using a spectral analysis. Observations are made regarding the motions of the pump and its mounting plate and the resultant radiated noise, depending on the frequency, as well as their correlation. A numerical analysis using the Rayleigh integral equation is also performed to further investigate the contribution of the mounting plate motion on the noise radiation. For the evaluation of noise performance, two different units are tested at multiple operating conditions, and comparisons are made based on their measured sound power levels (SWLs) and sound pressure levels (SPLs). The results emphasize the importance of SWL measurement for the fair noise performance evaluation, and the two methods are proposed as practices to determine the minimum number of measurement points for practicability and to have reliable sound power determination for hydraulic pumps.

Suggested Citation

  • Sangbeom Woo & Andrea Vacca, 2020. "Experimental Characterization and Evaluation of the Vibroacoustic Field of Hydraulic Pumps: The Case of an External Gear Pump," Energies, MDPI, vol. 13(24), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6639-:d:463218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangbeom Woo & Timothy Opperwall & Andrea Vacca & Manuel Rigosi, 2017. "Modeling Noise Sources and Propagation in External Gear Pumps," Energies, MDPI, vol. 10(7), pages 1-20, July.
    2. Taeho Kim & Monika Ivantysynova, 2017. "Active Vibration Control of Swash Plate-Type Axial Piston Machines with Two-Weight Notch Least Mean Square/Filtered-x Least Mean Square (LMS/FxLMS) Filters," Energies, MDPI, vol. 10(5), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenbin Su & Hongbo Wei & Penghua Guo & Ruizhe Guo, 2021. "Remote Monitoring and Fault Diagnosis of Ocean Current Energy Hydraulic Transmission and Control Power Generation System," Energies, MDPI, vol. 14(13), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Vacca, 2018. "Energy Efficiency and Controllability of Fluid Power Systems," Energies, MDPI, vol. 11(5), pages 1-6, May.
    2. Timm Hieronymus & Thomas Lobsinger & Gunther Brenner, 2021. "A Combined CFD-FEM Approach to Predict Fluid-Borne Vibrations and Noise Radiation of a Rotary Vane Pump," Energies, MDPI, vol. 14(7), pages 1-23, March.
    3. Juan Zhai & Shengquan Li & Zhuang Xu & Luyao Zhang & Juan Li, 2022. "Reduced-Order Extended State Observer-Based Sliding Mode Control for All-Clamped Plate Using an Inertial Actuator," Energies, MDPI, vol. 15(5), pages 1-12, February.
    4. Jakub Milan Hradecký, 2023. "Description of Pressure-Multiplying Efficiency Model Creation Used for Pressure Intensifiers Based on Rotary Flow Dividers," Energies, MDPI, vol. 16(10), pages 1-21, May.
    5. Xiaoya Shang & Zhigang Li & Tianyao Ji & P. Z. Wu & Qinghua Wu, 2017. "Online Area Load Modeling in Power Systems Using Enhanced Reinforcement Learning," Energies, MDPI, vol. 10(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6639-:d:463218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.