IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p51-d1009798.html
   My bibliography  Save this article

A Generalized Fault Tolerant Control Based on Back EMF Feedforward Compensation: Derivation and Application on Induction Motors Drives

Author

Listed:
  • Mahdi Tousizadeh

    (Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia)

  • Amirmehdi Yazdani

    (College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia)

  • Hang Seng Che

    (Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia)

  • Hai Wang

    (College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia)

  • Amin Mahmoudi

    (College of Science and Engineering, Flinders University, Adelaide 5042, Australia)

  • Nasrudin Abd Rahim

    (Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia)

Abstract

In this paper, a fault-tolerant three-phase induction drive based on field-oriented control is studied, and an analytical approach is proposed to elucidate the limitations of FOC in flux-torque regulation from the controller perspective. With an open-phase fault, the disturbance terms appear in the controller reference frame and degrade the controller performance when operating in a d-q plane with DC quantities. In addition, the hardware reconfiguration, which is essential to operate faulted three-phase drives, causes substantial change in the way the control parameters v d , v q are reflected onto the machine terminals. An accurate understanding of the feedforward term, by considering the open-phase fault and the hardware modifications, is provided to re-enable the FOC in presence of an open-phase fault. Furthermore, the concept of feedforward term derivation is generically extended to cover multiphase induction drives encountering an open-phase fault whereby no hardware reconfiguration is intended. The proposed method is explained based on a symmetrical six-phase induction and can be extended to drives with a higher number of phases. The effectiveness of the proposed derivation method, which is required to form a feedforward fault-tolerant controller, is verified and compared through the simulation and experiment, ensuring smooth operation in postfault mode.

Suggested Citation

  • Mahdi Tousizadeh & Amirmehdi Yazdani & Hang Seng Che & Hai Wang & Amin Mahmoudi & Nasrudin Abd Rahim, 2022. "A Generalized Fault Tolerant Control Based on Back EMF Feedforward Compensation: Derivation and Application on Induction Motors Drives," Energies, MDPI, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:51-:d:1009798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/51/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/51/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emad Roshandel & Amin Mahmoudi & Solmaz Kahourzade & Amirmehdi Yazdani & GM Shafiullah, 2021. "Losses in Efficiency Maps of Electric Vehicles: An Overview," Energies, MDPI, vol. 14(22), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oğuz Mısır & Mehmet Akar, 2022. "Efficiency and Core Loss Map Estimation with Machine Learning Based Multivariate Polynomial Regression Model," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    2. Konstantina Bitsi & Sjoerd G. Bosga & Oskar Wallmark, 2022. "Design Aspects and Performance Evaluation of Pole-Phase Changing Induction Machines," Energies, MDPI, vol. 15(19), pages 1-18, September.
    3. Aissam Riad Meddour & Nassim Rizoug & Patrick Leserf & Christopher Vagg & Richard Burke & Cherif Larouci, 2023. "Optimization Approaches for Cost and Lifetime Improvements of Lithium-Ion Batteries in Electric Vehicle Powertrains," Energies, MDPI, vol. 16(18), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:51-:d:1009798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.