IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2920-d794948.html
   My bibliography  Save this article

Supraharmonic and Harmonic Emissions of a Bi-Directional V2G Electric Vehicle Charging Station and Their Impact to the Grid Impedance

Author

Listed:
  • Bernhard Grasel

    (Competence Field Renewable Energy Technologies, University of Applied Sciences Technikum Vienna, 1200 Vienna, Austria)

  • José Baptista

    (Department of Engineering, School of Science and Technology, University of Trás-os-Montes and Alto Douro and INESC-TEC, UTAD’s Pole, 5000-801 Vila Real, Portugal)

  • Manfred Tragner

    (Competence Field Renewable Energy Technologies, University of Applied Sciences Technikum Vienna, 1200 Vienna, Austria)

Abstract

Bidirectional electric vehicle supply equipment and charging stations (EVSE) offer new business models and can provide services to the electrical grid. The smart grid lab in Vienna gives unique testing possibilities of future smart grids, as different type of electrical equipment can be operated at a reconstructed, well-known distribution grid. In this work the harmonic and supraharmonic emissions of a bidirectional EVSE are measured according to IEC61000-4-7 and IEC61000-4-30 Ed3 standard as well as the high-frequency grid impedance. In addition, the efficiency and the power factor are determined at various operating points. Although THD i at nominal power (10 kW) is very low and the efficiency and power factor is very high, at low power levels the opposite situation arise. Supraharmonic emissions remain stable independent of the charging/discharging power, and both wideband and narrowband emissions occur. The additional capacitance when connecting the EVSE impacts the high-frequency grid impedance substantially and generates resonance points.

Suggested Citation

  • Bernhard Grasel & José Baptista & Manfred Tragner, 2022. "Supraharmonic and Harmonic Emissions of a Bi-Directional V2G Electric Vehicle Charging Station and Their Impact to the Grid Impedance," Energies, MDPI, vol. 15(8), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2920-:d:794948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim Slangen & Thijs van Wijk & Vladimir Ćuk & Sjef Cobben, 2020. "The Propagation and Interaction of Supraharmonics from Electric Vehicle Chargers in a Low-Voltage Grid," Energies, MDPI, vol. 13(15), pages 1-20, July.
    2. Tim Streubel & Christoph Kattmann & Adrian Eisenmann & Krzysztof Rudion, 2022. "Characterization of Supraharmonic Emission from Three Different Electric Vehicle Charging Infrastructures in Time and Frequency Domain," Energies, MDPI, vol. 15(2), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Michalec & Paweł Kostyła & Zbigniew Leonowicz, 2022. "Supraharmonic Pollution Emitted by Nonlinear Loads in Power Networks—Ongoing Worldwide Research and Upcoming Challenges," Energies, MDPI, vol. 16(1), pages 1-14, December.
    2. Nicholas D. de Andrade & Ruben B. Godoy & Edson A. Batista & Moacyr A. G. de Brito & Rafael L. R. Soares, 2022. "Embedded FPGA Controllers for Current Compensation Based on Modern Power Theories," Energies, MDPI, vol. 15(17), pages 1-17, August.
    3. Giovanni Artale & Nicola Panzavecchia & Valentina Cosentino & Antonio Cataliotti & Manel Ben-Romdhane & Amel Benazza-Ben Yahia & Valeria Boscaino & Noureddine Ben Othman & Vito Ditta & Michele Fiorino, 2023. "CZT-Based Harmonic Analysis in Smart Grid Using Low-Cost Electronic Measurement Boards," Energies, MDPI, vol. 16(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Michalec & Paweł Kostyła & Zbigniew Leonowicz, 2022. "Supraharmonic Pollution Emitted by Nonlinear Loads in Power Networks—Ongoing Worldwide Research and Upcoming Challenges," Energies, MDPI, vol. 16(1), pages 1-14, December.
    2. Hui Zhou & Zesen Gui & Jiang Zhang & Qun Zhou & Xueshan Liu & Xiaoyang Ma, 2021. "A Quantification Method for Supraharmonic Emissions Based on Outlier Detection Algorithms," Energies, MDPI, vol. 14(19), pages 1-18, October.
    3. Andrea Mariscotti & Leonardo Sandrolini & Mattia Simonazzi, 2022. "Supraharmonic Emissions from DC Grid Connected Wireless Power Transfer Converters," Energies, MDPI, vol. 15(14), pages 1-21, July.
    4. Shimi Sudha Letha & Angela Espin Delgado & Sarah K. Rönnberg & Math H. J. Bollen, 2021. "Evaluation of Medium Voltage Network for Propagation of Supraharmonics Resonance," Energies, MDPI, vol. 14(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2920-:d:794948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.