IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1093-d501942.html
   My bibliography  Save this article

Evaluation of Medium Voltage Network for Propagation of Supraharmonics Resonance

Author

Listed:
  • Shimi Sudha Letha

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 931 87 Skellefteå, Sweden)

  • Angela Espin Delgado

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 931 87 Skellefteå, Sweden)

  • Sarah K. Rönnberg

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 931 87 Skellefteå, Sweden)

  • Math H. J. Bollen

    (Department of Engineering Sciences and Mathematics, Luleå University of Technology, 931 87 Skellefteå, Sweden)

Abstract

Power converters with high switching frequency used to integrate renewable power sources to medium and low voltage networks are sources of emission in the supraharmonic range (2 to 150 kHz). When such converters are connected to a medium voltage (MV) network these supraharmonics propagate through the MV network and can impact network and customer equipment over a wide range. This paper evaluates an existing Swedish MV electrical network and studies the pattern of supraharmonic resonance and the propagation of supraharmonics. The MV network consists of eight feeders including a small wind farm. Simulations reveal that, the bigger the MV network, the more resonant frequencies, but also the lower the amplitude of the resonance peaks in the driving point impedance. It was also identified that for short feeders as length increases, the magnitude of the transfer impedance at supraharmonic frequency decreases. For further increment in feeder length, the magnitude increases or becomes almost constant. For very long feeders, the transfer impedance further starts decreasing. The eight feeders in the network under study are similar but show completely different impedance versus frequency characteristics. Measurements at the MV side of the wind farm show time varying emissions in the supraharmonic range during low power production. The impact of these emissions coupled with system resonance is examined.

Suggested Citation

  • Shimi Sudha Letha & Angela Espin Delgado & Sarah K. Rönnberg & Math H. J. Bollen, 2021. "Evaluation of Medium Voltage Network for Propagation of Supraharmonics Resonance," Energies, MDPI, vol. 14(4), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1093-:d:501942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim Slangen & Thijs van Wijk & Vladimir Ćuk & Sjef Cobben, 2020. "The Propagation and Interaction of Supraharmonics from Electric Vehicle Chargers in a Low-Voltage Grid," Energies, MDPI, vol. 13(15), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shimi Sudha Letha & Math H. J. Bollen & Tatiano Busatto & Angela Espin Delgado & Enock Mulenga & Hamed Bakhtiari & Jil Sutaria & Kazi Main Uddin Ahmed & Naser Nakhodchi & Selçuk Sakar & Vineetha Ravin, 2023. "Power Quality Issues of Electro-Mobility on Distribution Network—An Overview," Energies, MDPI, vol. 16(13), pages 1-21, June.
    2. José Baptista & Pedro Faria & Bruno Canizes & Tiago Pinto, 2022. "Power Quality of Renewable Energy Source Systems: A New Paradigm of Electrical Grids," Energies, MDPI, vol. 15(9), pages 1-4, April.
    3. Łukasz Michalec & Paweł Kostyła & Zbigniew Leonowicz, 2022. "Supraharmonic Pollution Emitted by Nonlinear Loads in Power Networks—Ongoing Worldwide Research and Upcoming Challenges," Energies, MDPI, vol. 16(1), pages 1-14, December.
    4. Hui Zhou & Zesen Gui & Jiang Zhang & Qun Zhou & Xueshan Liu & Xiaoyang Ma, 2021. "A Quantification Method for Supraharmonic Emissions Based on Outlier Detection Algorithms," Energies, MDPI, vol. 14(19), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Zhou & Zesen Gui & Jiang Zhang & Qun Zhou & Xueshan Liu & Xiaoyang Ma, 2021. "A Quantification Method for Supraharmonic Emissions Based on Outlier Detection Algorithms," Energies, MDPI, vol. 14(19), pages 1-18, October.
    2. Bernhard Grasel & José Baptista & Manfred Tragner, 2022. "Supraharmonic and Harmonic Emissions of a Bi-Directional V2G Electric Vehicle Charging Station and Their Impact to the Grid Impedance," Energies, MDPI, vol. 15(8), pages 1-27, April.
    3. Łukasz Michalec & Paweł Kostyła & Zbigniew Leonowicz, 2022. "Supraharmonic Pollution Emitted by Nonlinear Loads in Power Networks—Ongoing Worldwide Research and Upcoming Challenges," Energies, MDPI, vol. 16(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1093-:d:501942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.