IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1813-d761662.html
   My bibliography  Save this article

Increasing Density of 3D-Printed Sandstone through Compaction

Author

Listed:
  • Kevin J. Hodder

    (Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Angel J. Sanchez-Barra

    (Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Sergey Ishutov

    (Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Gonzalo Zambrano-Narvaez

    (Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

  • Rick J. Chalaturnyk

    (Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada)

Abstract

The geomechanical and transport properties of rocks are of great importance to geoscience and engineering, as these properties provide responses to external stresses and flow regimes in the subsurface. Typically, experiments conducted on cores from reservoir formations have a degree of uncertainty, due to the heterogeneous characteristics of rock samples. To combat this uncertainty, binder-jet additive manufacturing (3D printing) is an emerging technology to characterize natural porous media in a repeatable fashion. In this study, the 3D printing sandstone analogue involved sand powder and organic binder to mimic silica grains and cement in natural sandstone. The use of compaction rollers and the adjustment of printing parameters allowed one to test how the porosity and strength of 3D-printed samples can replicate the transport and geomechanical properties of natural sandstone. The densities of samples were increased by ~15% and compressive strength by ~65% with the use of the larger roller. This is a promising alternative to experimental testing to calibrate numerical models in geoscience and engineering. The significance of this approach is to allow for customizable porosity, permeability, and strength in rock samples, while preserving scarce natural rock samples.

Suggested Citation

  • Kevin J. Hodder & Angel J. Sanchez-Barra & Sergey Ishutov & Gonzalo Zambrano-Narvaez & Rick J. Chalaturnyk, 2022. "Increasing Density of 3D-Printed Sandstone through Compaction," Energies, MDPI, vol. 15(5), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1813-:d:761662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongfei Yang & Zhihui Liu & Zhixue Sun & Senyou An & Wenjie Zhang & Pengfei Liu & Jun Yao & Jingsheng Ma, 2017. "Research on Stress Sensitivity of Fractured Carbonate Reservoirs Based on CT Technology," Energies, MDPI, vol. 10(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanniarachchige Gnamani Pabasara Kumari & Pathegama Gamage Ranjith, 2022. "Experimental and Numerical Investigation of the Flow Behaviour of Fractured Granite under Extreme Temperature and Pressure Conditions," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    2. Qinwen Zhang & Liehui Zhang & Qiguo Liu & Youshi Jiang, 2020. "Pressure Performance of Highly Deviated Well in Low Permeability Carbonate Gas Reservoir Using a Composite Model," Energies, MDPI, vol. 13(22), pages 1-19, November.
    3. Liming Zhang & Zekun Deng & Kai Zhang & Tao Long & Joshua Kwesi Desbordes & Hai Sun & Yongfei Yang, 2019. "Well-Placement Optimization in an Enhanced Geothermal System Based on the Fracture Continuum Method and 0-1 Programming," Energies, MDPI, vol. 12(4), pages 1-20, February.
    4. Yi Feng & Gao Li & Yingfeng Meng & Boyun Guo, 2018. "A Novel Approach to Investigating Transport of Lost Circulation Materials in Rough Fracture," Energies, MDPI, vol. 11(10), pages 1-19, September.
    5. Ali Shafiei & Maurice B. Dusseault & Ehsan Kosari & Morteza N. Taleghani, 2018. "Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach," Energies, MDPI, vol. 11(2), pages 1-26, February.
    6. Yongfei Yang & Zhihui Liu & Jun Yao & Lei Zhang & Jingsheng Ma & S. Hossein Hejazi & Linda Luquot & Toussaint Dono Ngarta, 2018. "Flow Simulation of Artificially Induced Microfractures Using Digital Rock and Lattice Boltzmann Methods," Energies, MDPI, vol. 11(8), pages 1-17, August.
    7. Evgenii Vasilevich Kozhevnikov & Mikhail Sergeevich Turbakov & Evgenii Pavlovich Riabokon & Vladimir Valerevich Poplygin, 2021. "Effect of Effective Pressure on the Permeability of Rocks Based on Well Testing Results," Energies, MDPI, vol. 14(8), pages 1-20, April.
    8. Haiyuan Yang & Li Zhang & Ronghe Liu & Xianli Wen & Yongfei Yang & Lei Zhang & Kai Zhang & Roohollah Askari, 2019. "Thermal Conduction Simulation Based on Reconstructed Digital Rocks with Respect to Fractures," Energies, MDPI, vol. 12(14), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1813-:d:761662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.