IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p312-d129787.html
   My bibliography  Save this article

Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach

Author

Listed:
  • Ali Shafiei

    (Department of Petroleum Engineering, School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan)

  • Maurice B. Dusseault

    (Department of Earth & Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Ehsan Kosari

    (Research Institute for Earth Sciences, Geological Survey of Iran, P.O. Box 13185-1494 Tehran, Iran)

  • Morteza N. Taleghani

    (National Iranian Offshore Oil Company (IOOC), P.O. Box 13185-1494 Tehran, Iran)

Abstract

In this paper, we characterized the natural fracture systems and inferred the state of in situ stress field through an integrated study in a very complex and heterogeneous fractured carbonate reservoir. Relative magnitudes and orientations of the in-situ principal stresses in a naturally fractured carbonate heavy oil field were estimated with a combination of available data (World Stress Map, geological and geotectonic evidence, outcrop studies) and techniques (core analysis, borehole image logs and Side View Seismic Location). The estimates made here using various tools and data including routine core analysis and image logs are confirmatory to estimates made by the World Stress Map and geotectonic facts. NE-SW and NW-SE found to be the dominant orientations for maximum and minimum horizontal stresses in the study area. In addition, three dominant orientations were identified for vertical and sub-vertical fractures atop the crestal region of the anticlinal structure. Image logs found useful in recognition and delineation of natural fractures. The results implemented in a real field development and proved practical in optimal well placement, drilling and production practices. Such integrated studies can be instrumental in any E&P projects and related projects such as geological CO 2 sequestration site characterization.

Suggested Citation

  • Ali Shafiei & Maurice B. Dusseault & Ehsan Kosari & Morteza N. Taleghani, 2018. "Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach," Energies, MDPI, vol. 11(2), pages 1-26, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:312-:d:129787
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongfei Yang & Zhihui Liu & Zhixue Sun & Senyou An & Wenjie Zhang & Pengfei Liu & Jun Yao & Jingsheng Ma, 2017. "Research on Stress Sensitivity of Fractured Carbonate Reservoirs Based on CT Technology," Energies, MDPI, vol. 10(11), pages 1-15, November.
    2. Haijiao Liu & Xuhui Zhang & Xiaobing Lu & Qingjie Liu, 2017. "Study on Flow in Fractured Porous Media Using Pore-Fracture Network Modeling," Energies, MDPI, vol. 10(12), pages 1-17, December.
    3. Siroos Salimi & Ali Ghalambor, 2011. "Experimental Study of Formation Damage during Underbalanced-Drilling in Naturally Fractured Formations," Energies, MDPI, vol. 4(10), pages 1-20, October.
    4. Junling Fang & Fengde Zhou & Zhonghua Tang, 2017. "Discrete Fracture Network Modelling in a Naturally Fractured Carbonate Reservoir in the Jingbei Oilfield, China," Energies, MDPI, vol. 10(2), pages 1-19, February.
    5. Zhaohui Chong & Xuehua Li & Xiangyu Chen & Ji Zhang & Jingzheng Lu, 2017. "Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation," Energies, MDPI, vol. 10(7), pages 1-33, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grace Loi & Cuong Nguyen & Larissa Chequer & Thomas Russell & Abbas Zeinijahromi & Pavel Bedrikovetsky, 2023. "Treatment of Oil Production Data under Fines Migration and Productivity Decline," Energies, MDPI, vol. 16(8), pages 1-29, April.
    2. Ningbo Zhang & Changyou Liu & Baobao Chen, 2018. "A Case Study of Presplitting Blasting Parameters of Hard and Massive Roof Based on the Interaction between Support and Overlying Strata," Energies, MDPI, vol. 11(6), pages 1-14, May.
    3. Kevin J. Hodder & Angel J. Sanchez-Barra & Sergey Ishutov & Gonzalo Zambrano-Narvaez & Rick J. Chalaturnyk, 2022. "Increasing Density of 3D-Printed Sandstone through Compaction," Energies, MDPI, vol. 15(5), pages 1-15, March.
    4. Wanniarachchige Gnamani Pabasara Kumari & Pathegama Gamage Ranjith, 2022. "Experimental and Numerical Investigation of the Flow Behaviour of Fractured Granite under Extreme Temperature and Pressure Conditions," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    5. Long Ren & Wendong Wang & Yuliang Su & Mingqiang Chen & Cheng Jing & Nan Zhang & Yanlong He & Jian Sun, 2018. "Multiporosity and Multiscale Flow Characteristics of a Stimulated Reservoir Volume (SRV)-Fractured Horizontal Well in a Tight Oil Reservoir," Energies, MDPI, vol. 11(10), pages 1-14, October.
    6. Liang Sun & Suping Peng & Dengke He, 2018. "A Novel Static Correction Approach for Eliminating the Effect of Geophones—A Case Study in Coal Reservoirs, Ordos Basin, China," Energies, MDPI, vol. 11(12), pages 1-12, November.
    7. Yongfei Yang & Zhihui Liu & Jun Yao & Lei Zhang & Jingsheng Ma & S. Hossein Hejazi & Linda Luquot & Toussaint Dono Ngarta, 2018. "Flow Simulation of Artificially Induced Microfractures Using Digital Rock and Lattice Boltzmann Methods," Energies, MDPI, vol. 11(8), pages 1-17, August.
    8. Qinwen Zhang & Liehui Zhang & Qiguo Liu & Youshi Jiang, 2020. "Pressure Performance of Highly Deviated Well in Low Permeability Carbonate Gas Reservoir Using a Composite Model," Energies, MDPI, vol. 13(22), pages 1-19, November.
    9. Yuwei Li & Dan Jia & Wei Li & Kunpeng Zhang, 2018. "Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology," Energies, MDPI, vol. 11(5), pages 1-13, May.
    10. Liming Zhang & Zekun Deng & Kai Zhang & Tao Long & Joshua Kwesi Desbordes & Hai Sun & Yongfei Yang, 2019. "Well-Placement Optimization in an Enhanced Geothermal System Based on the Fracture Continuum Method and 0-1 Programming," Energies, MDPI, vol. 12(4), pages 1-20, February.
    11. Evgenii Vasilevich Kozhevnikov & Mikhail Sergeevich Turbakov & Evgenii Pavlovich Riabokon & Vladimir Valerevich Poplygin, 2021. "Effect of Effective Pressure on the Permeability of Rocks Based on Well Testing Results," Energies, MDPI, vol. 14(8), pages 1-20, April.
    12. Xuelei Feng & Fengshan Ma & Haijun Zhao & Gang Liu & Jie Guo, 2019. "Gas Multiple Flow Mechanisms and Apparent Permeability Evaluation in Shale Reservoirs," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    13. Xiangxiang Zhang & Jianguo Wang & Feng Gao & Xiaolin Wang, 2018. "Numerical Study of Fracture Network Evolution during Nitrogen Fracturing Processes in Shale Reservoirs," Energies, MDPI, vol. 11(10), pages 1-22, September.
    14. Yi Feng & Gao Li & Yingfeng Meng & Boyun Guo, 2018. "A Novel Approach to Investigating Transport of Lost Circulation Materials in Rough Fracture," Energies, MDPI, vol. 11(10), pages 1-19, September.
    15. Haiyuan Yang & Li Zhang & Ronghe Liu & Xianli Wen & Yongfei Yang & Lei Zhang & Kai Zhang & Roohollah Askari, 2019. "Thermal Conduction Simulation Based on Reconstructed Digital Rocks with Respect to Fractures," Energies, MDPI, vol. 12(14), pages 1-13, July.
    16. Wendong Wang & Yuliang Su & Bin Yuan & Kai Wang & Xiaopeng Cao, 2018. "Numerical Simulation of Fluid Flow through Fractal-Based Discrete Fractured Network," Energies, MDPI, vol. 11(2), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:312-:d:129787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.