IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p850-d732494.html
   My bibliography  Save this article

Photovoltaic System with a Battery-Assisted Quasi-Z-Source Inverter: Improved Control System Design Based on a Novel Small-Signal Model

Author

Listed:
  • Ivan Grgić

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Department of Power Engineering, University of Split, 21000 Split, Croatia)

  • Dinko Vukadinović

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Department of Power Engineering, University of Split, 21000 Split, Croatia)

  • Mateo Bašić

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Department of Power Engineering, University of Split, 21000 Split, Croatia)

  • Matija Bubalo

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Department of Power Engineering, University of Split, 21000 Split, Croatia)

Abstract

This paper deals with a photovoltaic (PV) system containing a quasi-Z-source inverter (qZSI) and batteries connected in parallel with the qZSI’s lower-voltage capacitor. The control system design is based on knowledge of three transfer functions which are obtained from the novel small-signal model of the considered system. The transfer function from the d -axis grid current to the battery current has been identified for the first time in this study for the considered system configuration and has been utilized for the design of the battery current control loop for the grid-tied operation. The transfer function from the duty cycle to the PV source voltage has been utilized for the design of the PV source voltage control loop. The PV source voltage is controlled so as to ensure the desired power production of the PV source. For the maximum power point tracking, a perturb-and-observe algorithm is utilized that does not require the measurement of the PV source current, but it instead utilizes the battery current during the stand-alone operation and the d -axis reference current during the grid-tied operation. The corresponding tracking period was determined by using the transfer function from the duty cycle to the battery current and in accordance with the longest settling time noted in the corresponding step response. The proposed control algorithm also has integrated protection against battery overcharging during the stand-alone operation. The considered system has been experimentally tested over wide ranges of irradiance and PV panel temperature.

Suggested Citation

  • Ivan Grgić & Dinko Vukadinović & Mateo Bašić & Matija Bubalo, 2022. "Photovoltaic System with a Battery-Assisted Quasi-Z-Source Inverter: Improved Control System Design Based on a Novel Small-Signal Model," Energies, MDPI, vol. 15(3), pages 1-29, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:850-:d:732494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/850/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/850/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lluís Monjo & Luis Sainz & Juan José Mesas & Joaquín Pedra, 2021. "State-Space Model of Quasi-Z-Source Inverter-PV Systems for Transient Dynamics Studies and Network Stability Assessment," Energies, MDPI, vol. 14(14), pages 1-15, July.
    2. Lluís Monjo & Luis Sainz & Juan José Mesas & Joaquín Pedra, 2021. "Quasi-Z-Source Inverter-Based Photovoltaic Power System Modeling for Grid Stability Studies," Energies, MDPI, vol. 14(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dinko Vukadinović, 2022. "Advanced Control Techniques for Wind/Solar/Battery Systems," Energies, MDPI, vol. 15(9), pages 1-2, May.
    2. Rafael Santos & Marcus V. M. Rodrigues & Luis De Oro Arenas & Flávio A. S. Gonçalves, 2023. "A Comprehensive Small-Signal Model Formulation and Analysis for the Quasi-Y Impedance-Source Inverter," Energies, MDPI, vol. 16(13), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matija Bubalo & Mateo Bašić & Dinko Vukadinović & Ivan Grgić, 2023. "Hybrid Wind-Solar Power System with a Battery-Assisted Quasi-Z-Source Inverter: Optimal Power Generation by Deploying Minimum Sensors," Energies, MDPI, vol. 16(3), pages 1-24, February.
    2. Sheng Wang & Huaibao Wang & Hao Ding & Ligen Xun & Sifan Wu, 2021. "A New SVPWM Strategy for Three-Phase Isolated Converter with Current Ripple Reduction," Energies, MDPI, vol. 14(16), pages 1-15, August.
    3. Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Dai-Van Vo & Young-Cheol Lim & Joon-Ho Choi, 2022. "Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction," Energies, MDPI, vol. 15(9), pages 1-18, April.
    4. Lluís Monjo & Luis Sainz & Juan José Mesas & Joaquín Pedra, 2021. "State-Space Model of Quasi-Z-Source Inverter-PV Systems for Transient Dynamics Studies and Network Stability Assessment," Energies, MDPI, vol. 14(14), pages 1-15, July.
    5. Rafael Santos & Marcus V. M. Rodrigues & Luis De Oro Arenas & Flávio A. S. Gonçalves, 2023. "A Comprehensive Small-Signal Model Formulation and Analysis for the Quasi-Y Impedance-Source Inverter," Energies, MDPI, vol. 16(13), pages 1-24, June.
    6. Abderahmane Abid & Abualkasim Bakeer & Laid Zellouma & Mansour Bouzidi & Abderezak Lashab & Boualaga Rabhi, 2023. "Low Computational Burden Predictive Direct Power Control of Quasi Z-Source Inverter for Grid-Tied PV Applications," Sustainability, MDPI, vol. 15(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:850-:d:732494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.