IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8735-d978615.html
   My bibliography  Save this article

Development of Broken Rotor Bar Fault Diagnosis Method with Sum of Weighted Fourier Series Coefficients Square

Author

Listed:
  • Bon-Gwan Gu

    (School of Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea)

Abstract

This study proposes a broken rotor bar (BRB) fault diagnosis method for an induction motor using the sum of the weighted Fourier series coefficients squares of a complex current as a diagnosis signal. First, the sum of the squares of the Fourier series coefficients confirms the very narrow band-pass filter characteristics to derive a specific frequency component. This assists us in obtaining a BRB fault diagnosis signal that exists in a limited frequency range. Second, the magnitude of the Fourier series coefficients of the BRB fault signal is proportional to the slip frequency and load condition. A weighting factor is proposed to render the BRB fault signal irrelevant to the slip frequency and load condition. Consequently, the proposed fault diagnosis can be conducted without the slip frequency information or searching for the maximum coefficient component. Finally, the proposed fault diagnosis method is validated through experiments using a 55 kW induction motor with and without a BRB fault. It is implemented with a DSP controller at time intervals of 20, 10, 5, and 4 s for the Fourier series. The proposed diagnosis method performs well under various load conditions and shows that the derived fault signal exhibits a large difference between healthy and BRB faulty induction motors.

Suggested Citation

  • Bon-Gwan Gu, 2022. "Development of Broken Rotor Bar Fault Diagnosis Method with Sum of Weighted Fourier Series Coefficients Square," Energies, MDPI, vol. 15(22), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8735-:d:978615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luis Alonso Trujillo Guajardo & Miguel Angel Platas Garza & Johnny Rodríguez Maldonado & Mario Alberto González Vázquez & Luis Humberto Rodríguez Alfaro & Fernando Salinas Salinas, 2022. "Prony Method Estimation for Motor Current Signal Analysis Diagnostics in Rotor Cage Induction Motors," Energies, MDPI, vol. 15(10), pages 1-24, May.
    2. Tomas A. Garcia-Calva & Daniel Morinigo-Sotelo & Vanessa Fernandez-Cavero & Arturo Garcia-Perez & Rene de J. Romero-Troncoso, 2021. "Early Detection of Broken Rotor Bars in Inverter-Fed Induction Motors Using Speed Analysis of Startup Transients," Energies, MDPI, vol. 14(5), pages 1-16, March.
    3. Xinyue Liu & Yan Yan & Kaibo Hu & Shan Zhang & Hongjie Li & Zhen Zhang & Tingna Shi, 2022. "Fault Diagnosis of Rotor Broken Bar in Induction Motor Based on Successive Variational Mode Decomposition," Energies, MDPI, vol. 15(3), pages 1-16, February.
    4. Mikko Tahkola & Áron Szücs & Jari Halme & Akhtar Zeb & Janne Keränen, 2022. "A Novel Machine Learning-Based Approach for Induction Machine Fault Classifier Development—A Broken Rotor Bar Case Study," Energies, MDPI, vol. 15(9), pages 1-23, May.
    5. Zuolu Wang & Jie Yang & Haiyang Li & Dong Zhen & Yuandong Xu & Fengshou Gu, 2019. "Fault Identification of Broken Rotor Bars in Induction Motors Using an Improved Cyclic Modulation Spectral Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    6. Arkadiusz Duda & Piotr Drozdowski, 2020. "Induction Motor Fault Diagnosis Based on Zero-Sequence Current Analysis," Energies, MDPI, vol. 13(24), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarahi Aguayo-Tapia & Gerardo Avalos-Almazan & Jose de Jesus Rangel-Magdaleno & Juan Manuel Ramirez-Cortes, 2023. "Physical Variable Measurement Techniques for Fault Detection in Electric Motors," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seif Eddine Chehaidia & Hakima Cherif & Musfer Alraddadi & Mohamed Ibrahim Mosaad & Abdelaziz Mahmoud Bouchelaghem, 2022. "Experimental Diagnosis of Broken Rotor Bar Faults in Induction Motors at Low Slip via Hilbert Envelope and Optimized Subtractive Clustering Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 15(18), pages 1-22, September.
    2. Tomas Garcia-Calva & Daniel Morinigo-Sotelo & Vanessa Fernandez-Cavero & Rene Romero-Troncoso, 2022. "Early Detection of Faults in Induction Motors—A Review," Energies, MDPI, vol. 15(21), pages 1-18, October.
    3. Luis Alonso Trujillo Guajardo & Miguel Angel Platas Garza & Johnny Rodríguez Maldonado & Mario Alberto González Vázquez & Luis Humberto Rodríguez Alfaro & Fernando Salinas Salinas, 2022. "Prony Method Estimation for Motor Current Signal Analysis Diagnostics in Rotor Cage Induction Motors," Energies, MDPI, vol. 15(10), pages 1-24, May.
    4. Marcin Tomczyk & Ryszard Mielnik & Anna Plichta & Iwona Gołdasz & Maciej Sułowicz, 2021. "Application of Genetic Algorithm for Inter-Turn Short Circuit Detection in Stator Winding of Induction Motor," Energies, MDPI, vol. 14(24), pages 1-20, December.
    5. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    6. Janusz Petryna & Arkadiusz Duda & Maciej Sułowicz, 2021. "Eccentricity in Induction Machines—A Useful Tool for Assessing Its Level," Energies, MDPI, vol. 14(7), pages 1-26, April.
    7. Marco Antonio Rodriguez-Blanco & Victor Golikov & René Osorio-Sánchez & Oleg Samovarov & Gerardo Ortiz-Torres & Rafael Sanchez-Lara & Jose Luis Vazquez-Avila, 2022. "Fault Diagnosis of Induction Motor Using D-Q Simplified Model and Parity Equations," Energies, MDPI, vol. 15(22), pages 1-19, November.
    8. Reza Bazghandi & Mohammad Hoseintabar Marzebali & Vahid Abolghasemi & Shahin Hedayati Kia, 2023. "A Novel Mode Un-Mixing Approach in Variational Mode Decomposition for Fault Detection in Wound Rotor Induction Machines," Energies, MDPI, vol. 16(14), pages 1-17, July.
    9. Sarahi Aguayo-Tapia & Gerardo Avalos-Almazan & Jose de Jesus Rangel-Magdaleno & Juan Manuel Ramirez-Cortes, 2023. "Physical Variable Measurement Techniques for Fault Detection in Electric Motors," Energies, MDPI, vol. 16(12), pages 1-21, June.
    10. Haiyang Li & Zuolu Wang & Dong Zhen & Fengshou Gu & Andrew Ball, 2019. "Modulation Sideband Separation Using the Teager–Kaiser Energy Operator for Rotor Fault Diagnostics of Induction Motors," Energies, MDPI, vol. 12(23), pages 1-16, November.
    11. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    12. Chao Fu & Dong Zhen & Yongfeng Yang & Fengshou Gu & Andrew Ball, 2019. "Effects of Bounded Uncertainties on the Dynamic Characteristics of an Overhung Rotor System with Rubbing Fault," Energies, MDPI, vol. 12(22), pages 1-15, November.
    13. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    14. Khaled Farag & Abdullah Shawier & Ayman S. Abdel-Khalik & Mohamed M. Ahmed & Shehab Ahmed, 2021. "Applicability Analysis of Indices-Based Fault Detection Technique of Six-Phase Induction Motor," Energies, MDPI, vol. 14(18), pages 1-23, September.
    15. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    16. Chibuzo Nwabufo Okwuosa & Jang-wook Hur, 2022. "A Filter-Based Feature-Engineering-Assisted SVC Fault Classification for SCIM at Minor-Load Conditions," Energies, MDPI, vol. 15(20), pages 1-24, October.
    17. Toomas Vaimann & Jose Alfonso Antonino-Daviu & Anton Rassõlkin, 2023. "Novel Approaches to Electrical Machine Fault Diagnosis," Energies, MDPI, vol. 16(15), pages 1-4, July.
    18. Tanvir Alam Shifat & Rubiya Yasmin & Jang-Wook Hur, 2021. "A Data Driven RUL Estimation Framework of Electric Motor Using Deep Electrical Feature Learning from Current Harmonics and Apparent Power," Energies, MDPI, vol. 14(11), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8735-:d:978615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.