IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7953-d954170.html
   My bibliography  Save this article

Implementation and Experimental Validation of Efficiency Improvement in PM Synchronous Hub Motors for Light Electric Vehicles

Author

Listed:
  • İrfan Güven Çömezoğlu

    (Department of Electrical Engineering, Yildiz Technical University, Istanbul 34220, Türkiye)

  • Sibel Zorlu Partal

    (Department of Electrical Engineering, Yildiz Technical University, Istanbul 34220, Türkiye)

Abstract

The efficiency of permanent magnet synchronous hub motors (PMSHM) used in light electric vehicles (EVs) is lower than that used in commercial EVs. Therefore, in this study a high-efficiency radial-flux outer-rotor PMSHM was designed for light EVs. The high-efficiency motor will contribute to the reduction of the power consumption demand from the batteries of EVs, the longer life of the batteries and the longer uninterrupted operation of the system. The optimization objectives, such as motor sizing, number of slots and poles, air gap length, material selection, stator winding structure, stator slot shape, magnet thickness, and cutting method for stator sheets were considered to ensure high efficiency and low cogging torque. In this study, three validation stages were followed; electromagnetic analyzes with FEM, analytical calculations, and finally experimental validation. First, the design parameters of the motor were determined based on the analyses results obtained using ANSYS Maxwell software, and then validated both with the analytical calculations and experimental results. The comparison results show that the design data of the motor at the rated speed agree well with the analytical calculations and test results. After obtaining the optimized motor design, the motor was installed on a prototype electric car for the road test. During the test drive, the motor performed successfully and operated compatibly with the rest of the electric vehicle systems such as the motor driver and the battery.

Suggested Citation

  • İrfan Güven Çömezoğlu & Sibel Zorlu Partal, 2022. "Implementation and Experimental Validation of Efficiency Improvement in PM Synchronous Hub Motors for Light Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7953-:d:954170
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7953/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7953/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karolis Dambrauskas & Jonas Vanagas & Tomas Zimnickas & Artūras Kalvaitis & Mindaugas Ažubalis, 2020. "A Method for Efficiency Determination of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 13(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Brando & Adolfo Dannier & Andrea Del Pizzo, 2022. "Efficiency Analytical Characterization for Brushless Electric Drives," Energies, MDPI, vol. 15(8), pages 1-11, April.
    2. Massimo Caruso & Antonino Oscar Di Tommaso & Giuseppe Lisciandrello & Rosa Anna Mastromauro & Rosario Miceli & Claudio Nevoloso & Ciro Spataro & Marco Trapanese, 2020. "A General and Accurate Measurement Procedure for the Detection of Power Losses Variations in Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(21), pages 1-19, November.
    3. Pham Quoc Khanh & Viet-Anh Truong & Ho Pham Huy Anh, 2021. "Extended Permanent Magnet Synchronous Motors Speed Range Based on the Active and Reactive Power Control of Inverters," Energies, MDPI, vol. 14(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7953-:d:954170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.