IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7445-d938206.html
   My bibliography  Save this article

Suppression of Wind Generator Speed Vibration Based on the Internal Model Control with Three Degrees of Freedom

Author

Listed:
  • Chenyang Zhou

    (School of Things Internet Engineering, Jiangnan University, Wuxi 214122, China)

  • Yanxia Shen

    (School of Things Internet Engineering, Jiangnan University, Wuxi 214122, China)

Abstract

When the wind power system is working in the maximum wind energy tracking area, or when its mechanical drivetrain system vibrates and the vibration frequency is relatively high, the system cannot suppress the speed vibration of the generator in the drivetrain system by adjusting the pitch angle. In this paper, a generator speed control system based on the three degrees of freedom internal model control (3-DOF-IMC) is established to control the generator speed. Thus, a scheme of using the feedback filter in the 3-DOF-IMC to suppress generator speed vibration caused by drivetrain shaft elasticity and gear clearance in the drivetrain system is proposed. Firstly, the vibration problem and waveform of the two-mass wind power drivetrain systems are discussed, and the generator’s vector control and speed control systems are analyzed. Secondly, the principle of the 3-DOF-IMC is described, and the influence of the three controllers on the speed tracking performance and anti-interference performance of the generator is discussed. The suppression ability of the feedback filter for different forms of disturbance signals is emphasized. Finally, the feedback filter controls the generator speed and eliminates the influence of drivetrain vibration on the generator speed. To verify the superiority of the proposed method, the vibration suppression effect, tracking performance and anti-interference performance of the proposed method are compared with the engineering design method (EDM) and conventional IMC (1-DOF-IMC) method. When the parameter α / β = 0.66, the generator speed amplitude overshoot of the proposed method is the same as the EDM. When α / β = 1, it is only 4% of the amplitude overshoot of the EDM. In addition, the tracking performance and anti-interference performance of the proposed method can be adjusted independently, and it is better than the EDM and the 1-DOF-IMC method.

Suggested Citation

  • Chenyang Zhou & Yanxia Shen, 2022. "Suppression of Wind Generator Speed Vibration Based on the Internal Model Control with Three Degrees of Freedom," Energies, MDPI, vol. 15(19), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7445-:d:938206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingming Zhao & Jinchen Ji, 2016. "Dynamic Analysis of Wind Turbine Gearbox Components," Energies, MDPI, vol. 9(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    2. Radu Saulescu & Mircea Neagoe & Codruta Jaliu & Olimpiu Munteanu, 2021. "A Comparative Performance Analysis of Counter-Rotating Dual-Rotor Wind Turbines with Speed-Adding Increasers," Energies, MDPI, vol. 14(9), pages 1-21, May.
    3. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    4. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    5. W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    6. Yaru Yang & Hua Li & Jin Yao & Wenxiang Gao & Haiyan Peng, 2019. "Analysis on the Force and Life of Gearbox in Double-Rotor Wind Turbine," Energies, MDPI, vol. 12(21), pages 1-19, November.
    7. Francisco Rubio & Carlos Llopis-Albert & Ana M. Pedrosa, 2023. "Analysis of the Influence of Calculation Parameters on the Design of the Gearbox of a High-Power Wind Turbine," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    8. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    9. Chenyang Zhou & Yanxia Shen, 2022. "A PID Control Method Based on Internal Model Control to Suppress Vibration of the Transmission Chain of Wind Power Generation System," Energies, MDPI, vol. 15(16), pages 1-18, August.
    10. Ding, Fangfang & Tian, Zhigang & Zhao, Fuqiong & Xu, Hao, 2018. "An integrated approach for wind turbine gearbox fatigue life prediction considering instantaneously varying load conditions," Renewable Energy, Elsevier, vol. 129(PA), pages 260-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7445-:d:938206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.