IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7364-d935524.html
   My bibliography  Save this article

Development and Validation of V2G Technology for Electric Vehicle Chargers Using Combo CCS Type 2 Connector Standards

Author

Listed:
  • Shahid Jaman

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Boud Verbrugge

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Oscar Hernandez Garcia

    (Products Innovation & Systems Verification (PI&SV) Team, Powerdale (PWD), Witte Patersstraat 4, 1040 Brussel, Belgium)

  • Mohamed Abdel-Monem

    (Products Innovation & Systems Verification (PI&SV) Team, Powerdale (PWD), Witte Patersstraat 4, 1040 Brussel, Belgium)

  • Blum Oliver

    (CR/AES3, Robert-Bosch-Campus 1, 71272 Renningen, Germany)

  • Thomas Geury

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Omar Hegazy

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

Abstract

Vehicle-to-Grid (V2G) technology is viewed as a viable solution to offer auxiliary power system services. Currently, V2G operation is only possible through DC chargers using the CHAdeMO connector with the necessary communication protocol. However, in Europe, for high-power DC charging (>50 kW), the Combined Charging Service (CCS) Type 2 is preferred over CHAdeMO. Therefore, this work presents the development of a V2G testing system with a Combo CCSType 2 charger including communication via the ISO 15118-2 protocol. The BOSCH passenger car with a 400 V battery pack is used to test and validate the technical feasibility of V2G charging via a Combo CCS Type 2 connector standard. The V2G feature is characterized in terms of efficiency, signal delay, response proportionality, magnitude accuracy and noise precision. A data driven V2G charger simulation model based on the real-time data is also developed in MATLAB/Simulink. The performance under various operating settings is presented in the outcomes, emphasizing the need for appropriate hardware calibration, and understanding while delivering standard-compliant grid control services using V2G technology. Finally, the results of the simulation model are compared with the real hardware results in terms of error, noise level and data magnitude accuracy.

Suggested Citation

  • Shahid Jaman & Boud Verbrugge & Oscar Hernandez Garcia & Mohamed Abdel-Monem & Blum Oliver & Thomas Geury & Omar Hegazy, 2022. "Development and Validation of V2G Technology for Electric Vehicle Chargers Using Combo CCS Type 2 Connector Standards," Energies, MDPI, vol. 15(19), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7364-:d:935524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. María Garcés Quílez & Mohamed Abdel-Monem & Mohamed El Baghdadi & Yang Yang & Joeri Van Mierlo & Omar Hegazy, 2018. "Modelling, Analysis and Performance Evaluation of Power Conversion Unit in G2V/V2G Application—A Review," Energies, MDPI, vol. 11(5), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srinath Belakavadi Sudarshan & Gopal Arunkumar, 2023. "Isolated DC-DC Power Converters for Simultaneous Charging of Electric Vehicle Batteries: Research Review, Design, High-Frequency Transformer Testing, Power Quality Concerns, and Future," Sustainability, MDPI, vol. 15(3), pages 1-71, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.
    2. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    3. Houssein Al Attar & Mohamed Assaad Hamida & Malek Ghanes & Miassa Taleb, 2023. "Review on Modeling and Control Strategies of DC–DC LLC Converters for Bidirectional Electric Vehicle Charger Applications," Energies, MDPI, vol. 16(9), pages 1-28, May.
    4. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    5. Yang Yang & Mohamed El Baghdadi & Yuanfeng Lan & Yassine Benomar & Joeri Van Mierlo & Omar Hegazy, 2018. "Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-22, July.
    6. Haaris Rasool & Boud Verbrugge & Shahid Jaman & Ekaterina Abramushkina & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Design and Real-Time Implementation of a Control System for SiC Off-Board Chargers of Battery Electric Buses," Energies, MDPI, vol. 15(4), pages 1-19, February.
    7. Lukáš Prokop & Tomáš Vantuch & Stanislav Mišák, 2018. "Multi Objective Optimization in Charge Management of Micro Grid Based Multistory Carpark," Energies, MDPI, vol. 11(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7364-:d:935524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.