IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7272-d932921.html
   My bibliography  Save this article

A Sensor-Based System for Dust Containment in the Construction Site

Author

Listed:
  • Romina Paolucci

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, 67100 L’Aquila, Italy)

  • Marianna Rotilio

    (Department of Civil, Construction-Architectural and Environmental Engineering, University of L’Aquila, Via G. Gronchi n. 18, 67100 L’Aquila, Italy)

  • Stefano Ricci

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, 67100 L’Aquila, Italy)

  • Andrea Pelliccione

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, 67100 L’Aquila, Italy)

  • Giuseppe Ferri

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, Via G. Gronchi 18, 67100 L’Aquila, Italy)

Abstract

The problem of the containment of fine dust (especially PM 2.5 and PM 10) emitted into the atmosphere is particularly acute, especially in industrialized countries. However, there are particular areas where it is still not adequately considered. One of these is the construction site sector. The aim of this work is to design a flexible, economical, and easy-to-use system, which allows for the detection of the emissions produced in critical circumstances such as the demolition of a building. To this end, a data logger and five customized nodes were designed through a five-step method. The data logger is able to transmit data to a PC, making them available in real time. The study was conducted on a reconstruction site in L’Aquila, Italy, a city severely affected by the earthquake in 2009, for two working days and a public holiday. Even if not presenting substantial critical issues in relation to the latter, the experimental results show that the emissions of PM 2.5 and PM 10 detected during the demolition activity far exceed, in some moments, the threshold values. In fact, peaks as high as about 123 μg/m 3 for PM 2.5 and over 1000 μg/m 3 for PM 10 have been detected.

Suggested Citation

  • Romina Paolucci & Marianna Rotilio & Stefano Ricci & Andrea Pelliccione & Giuseppe Ferri, 2022. "A Sensor-Based System for Dust Containment in the Construction Site," Energies, MDPI, vol. 15(19), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7272-:d:932921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tullio de Rubeis & Mirco Muttillo & Iole Nardi & Leonardo Pantoli & Vincenzo Stornelli & Dario Ambrosini, 2019. "Integrated Measuring and Control System for Thermal Analysis of Buildings Components in Hot Box Experiments," Energies, MDPI, vol. 12(11), pages 1-22, May.
    2. Eun-Min Cho & Hyung Jin Jeon & Dan Ki Yoon & Si Hyun Park & Hyung Jin Hong & Kil Yong Choi & Heun Woo Cho & Hyo Chang Cheon & Cheol Min Lee, 2019. "Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations," IJERPH, MDPI, vol. 16(8), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide Simeone & Marianna Rotilio & Federica Cucchiella, 2023. "Construction Work and Utilities in Historic Centers: Strategies for a Transition towards Fuel-Free Construction Sites," Energies, MDPI, vol. 16(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tullio de Rubeis & Annamaria Ciccozzi & Letizia Giusti & Dario Ambrosini, 2022. "The 3D Printing Potential for Heat Flow Optimization: Influence of Block Geometries on Heat Transfer Processes," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    2. Abdalhadi Alhawari & Phalguni Mukhopadhyaya, 2022. "Construction and Calibration of a Unique Hot Box Apparatus," Energies, MDPI, vol. 15(13), pages 1-20, June.
    3. Piotr Michalak, 2021. "Experimental and Theoretical Study on the Internal Convective and Radiative Heat Transfer Coefficients for a Vertical Wall in a Residential Building," Energies, MDPI, vol. 14(18), pages 1-22, September.
    4. Jorge de Brito & M. Glória Gomes, 2020. "Special Issue “Building Thermal Envelope”," Energies, MDPI, vol. 13(5), pages 1-5, February.
    5. Tullio de Rubeis & Luca Evangelisti & Claudia Guattari & Domenica Paoletti & Francesco Asdrubali & Dario Ambrosini, 2022. "How Do Temperature Differences and Stable Thermal Conditions Affect the Heat Flux Meter (HFM) Measurements of Walls? Laboratory Experimental Analysis," Energies, MDPI, vol. 15(13), pages 1-12, June.
    6. Davide Simeone & Marianna Rotilio & Federica Cucchiella, 2023. "Construction Work and Utilities in Historic Centers: Strategies for a Transition towards Fuel-Free Construction Sites," Energies, MDPI, vol. 16(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7272-:d:932921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.