IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6087-d894563.html
   My bibliography  Save this article

Special Cement Slurries for Strengthening Salt Rock Mass

Author

Listed:
  • Stanisław Stryczek

    (Faculty of Drilling, AGH University of Science and Technology, Oil and Gas, Al. Mickiewicza 30, 30-059 Cracow, Poland)

  • Andrzej Gonet

    (Faculty of Drilling, AGH University of Science and Technology, Oil and Gas, Al. Mickiewicza 30, 30-059 Cracow, Poland)

  • Marcin Kremieniewski

    (Oil and Gas Institute—National Research Institute, 25A Lubicz Str., 31-503 Krakow, Poland)

Abstract

Every year, the number of exploited mine workings necessary to seal the exploited mines increases in the world. As a result of experiments, technologies are developed that allow slurry to be pumped to fill free rock spaces or to liquidate rock mass discontinuities. The slurry preparation technologies can be divided into: subsurface and surface preparation and injection. Due to the pressure that forces the sealing slurry to move, the following can be distinguished: pressure technologies and technologies of gravity injection. The effectiveness of the work is determined by the correct selection of the technique and technology of the treatment and the selection of the optimal cement slurry recipe. The type of sealing liquid is especially important during works related to filling the exploited mine workings in salt mines. Therefore, this article presents the criteria for the selection of slurry recipes and their technological parameters, used for sealing and strengthening the salt rock mass. For this purpose, laboratory tests are carried out on various formulas of sealing slurries, prepared on the basis of full saturated brine and CEM I 32.5R Portland cement, ground granulated blast furnace slag, fly ash, and silt. The proposed concept for the selection of sealing slurry formulas has been positively verified during the performed works on sealing and strengthening the salt rock mass.

Suggested Citation

  • Stanisław Stryczek & Andrzej Gonet & Marcin Kremieniewski, 2022. "Special Cement Slurries for Strengthening Salt Rock Mass," Energies, MDPI, vol. 15(16), pages 1-10, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6087-:d:894563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuping Pan & Jiamin Ding & Yaqi Peng & Shengyong Lu & Xiaodong Li, 2022. "Investigation of Mechanochemically Treated Municipal Solid Waste Incineration Fly Ash as Replacement for Cement," Energies, MDPI, vol. 15(6), pages 1-11, March.
    2. Mays A. Hamad & Mohammed Nasr & Ali Shubbar & Zainab Al-Khafaji & Zainab Al Masoodi & Osamah Al-Hashimi & Patryk Kot & Rafid Alkhaddar & Khalid Hashim, 2021. "Production of Ultra-High-Performance Concrete with Low Energy Consumption and Carbon Footprint Using Supplementary Cementitious Materials Instead of Silica Fume: A Review," Energies, MDPI, vol. 14(24), pages 1-26, December.
    3. Leonid Dvorkin & Vitaliy Marchuk & Izabela Hager & Marcin Maroszek, 2022. "Design of Cement–Slag Concrete Composition for 3D Printing," Energies, MDPI, vol. 15(13), pages 1-13, June.
    4. Leonid Dvorkin & Patrycja Duży & Karolina Brudny & Marta Choińska & Kinga Korniejenko, 2022. "Adhesive Strength of Modified Cement–Ash Mortars," Energies, MDPI, vol. 15(12), pages 1-10, June.
    5. Marcin Kremieniewski, 2020. "Recipe of Lightweight Slurry with High Early Strength of the Resultant Cement Sheath," Energies, MDPI, vol. 13(7), pages 1-13, April.
    6. Andrzej Gonet & Stanisław Stryczek & Marcin Kremieniewski, 2022. "Modern Methods of Strengthening and Sealing Salt Mines," Energies, MDPI, vol. 15(14), pages 1-12, July.
    7. Hao He & Xuanhao Guo & Lizheng Jin & Yaqi Peng & Minghui Tang & Shengyong Lu, 2022. "The Effect of Adjusting Sinter Raw Mix on Dioxins from Iron Ore Co-Sintering with Municipal Solid Waste Incineration Fly Ash," Energies, MDPI, vol. 15(3), pages 1-12, February.
    8. Marcin Kremieniewski, 2022. "Influence of Hblock Fine-Grained Material on Selected Parameters of Cement Slurry," Energies, MDPI, vol. 15(8), pages 1-20, April.
    9. Qiangqiang Cheng & Yaben Guo & Chaowei Dong & Jianfei Xu & Wanan Lai & Bin Du, 2021. "Mechanical Properties of Clay Based Cemented Paste Backfill for Coal Recovery from Deep Mines," Energies, MDPI, vol. 14(18), pages 1-14, September.
    10. Marcin Kremieniewski & Sławomir Błaż & Stanisław Stryczek & Rafał Wiśniowski & Andrzej Gonet, 2021. "Effect of Cleaning the Annular Space on the Adhesion of the Cement Sheath to the Rock," Energies, MDPI, vol. 14(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanisław Stryczek & Andrzej Gonet & Marcin Kremieniewski & Tomasz Kowalski, 2023. "Forecasting Strength Parameters of Hardened Geopolymer Slurries Applied to Seal Casing Columns in Boreholes," Energies, MDPI, vol. 16(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Kremieniewski, 2022. "Improving the Efficiency of Oil Recovery in Research and Development," Energies, MDPI, vol. 15(12), pages 1-7, June.
    2. Stanisław Stryczek & Andrzej Gonet & Marcin Kremieniewski & Tomasz Kowalski, 2023. "Forecasting Strength Parameters of Hardened Geopolymer Slurries Applied to Seal Casing Columns in Boreholes," Energies, MDPI, vol. 16(11), pages 1-16, May.
    3. Andrzej Gonet & Stanisław Stryczek & Marcin Kremieniewski, 2022. "Modern Methods of Strengthening and Sealing Salt Mines," Energies, MDPI, vol. 15(14), pages 1-12, July.
    4. Krzysztof Seńczuk & Aneta Sapińska-Śliwa & Tomasz Kowalski, 2022. "Utilization of Basalt Dust as Waste Material in Cement Grouts for Geothermal Application," Energies, MDPI, vol. 15(19), pages 1-30, September.
    5. Marcin Kremieniewski & Miłosz Kędzierski & Sławomir Błaż, 2021. "Increasing the Efficiency of Sealing the Borehole in Terms of Spacer Pumping Time," Energies, MDPI, vol. 14(20), pages 1-11, October.
    6. Mohammed Salah Nasr & Awham Jumah Salman & Rusul Jaber Ghayyib & Ali Shubbar & Shahad Al-Mamoori & Zainab Al-khafaji & Tameem Mohammed Hashim & Zaid Ali Hasan & Monower Sadique, 2023. "Effect of Clay Brick Waste Powder on the Fresh and Hardened Properties of Self-Compacting Concrete: State-of-the-Art and Life Cycle Assessment," Energies, MDPI, vol. 16(12), pages 1-23, June.
    7. Monika Czop & Beata Łaźniewska-Piekarczyk & Małgorzata Kajda-Szcześniak, 2022. "Evaluation of the Immobilization of Fly Ash from the Incineration of Municipal Waste in Cement Mortar Incorporating Nanomaterials—A Case Study," Energies, MDPI, vol. 15(23), pages 1-16, November.
    8. Marcin Kremieniewski, 2020. "Influence of Graphene Oxide on Rheological Parameters of Cement Slurries," Energies, MDPI, vol. 13(20), pages 1-15, October.
    9. Marcin Kremieniewski & Rafał Wiśniowski & Stanisław Stryczek & Grzegorz Orłowicz, 2021. "Possibilities of Limiting Migration of Natural Gas in Boreholes in the Context of Laboratory Studies," Energies, MDPI, vol. 14(14), pages 1-13, July.
    10. Marcin Kremieniewski & Bartłomiej Jasiński & Grzegorz Zima & Łukasz Kut, 2021. "Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes," Energies, MDPI, vol. 14(12), pages 1-11, June.
    11. Marcin Kremieniewski & Rafał Wiśniowski & Stanisław Stryczek & Paweł Łopata, 2021. "Comparison of Efficient Ways of Mud Cake Removal from Casing Surface with Traditional and New Agents," Energies, MDPI, vol. 14(12), pages 1-13, June.
    12. Abdennour C. Seibi & Fatick Nath & Adedapo B. Adeoye & Kaustubh G. Sawant, 2022. "Optimization of Cement–Rubber Composites for Eco-Sustainable Well Completion: Rheological, Mechanical, Petrophysical, and Creep Properties," Energies, MDPI, vol. 15(8), pages 1-20, April.
    13. Marcin Kremieniewski & Sławomir Błaż & Stanisław Stryczek & Rafał Wiśniowski & Andrzej Gonet, 2021. "Effect of Cleaning the Annular Space on the Adhesion of the Cement Sheath to the Rock," Energies, MDPI, vol. 14(16), pages 1-15, August.
    14. Marcin Kremieniewski, 2021. "Hybrid Washer Fluid for Primary Cementing," Energies, MDPI, vol. 14(5), pages 1-11, February.
    15. Peace Y. L. Liu & James J. H. Liou & Sun-Weng Huang, 2023. "Exploring the Barriers to the Advancement of 3D Printing Technology," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    16. Marcin Kremieniewski, 2020. "Ultra-Lightweight Cement Slurry to Seal Wellbore of Poor Wellbore Stability," Energies, MDPI, vol. 13(12), pages 1-19, June.
    17. Yudi Wang & Guoqiang Xu, 2022. "Numerical Simulation of Thermal Storage Performance of Different Concrete Floors," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    18. Aref A. Abadel & Mohammed Salah Nasr & Ali Shubbar & Tameem Mohammed Hashim & Rabin Tuladhar, 2023. "Potential Use of Rendering Mortar Waste Powder as a Cement Replacement Material: Fresh, Mechanical, Durability and Microstructural Properties," Sustainability, MDPI, vol. 15(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6087-:d:894563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.