IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5902-d888321.html
   My bibliography  Save this article

Conceptual Errors in Actuator Disc Theory and Betz’s Law for Wind Turbines

Author

Listed:
  • Zh. Zhang

    (ZHAW Zurich University of Applied Sciences, Institute of Energy Systems and Fluid Engineering (IEFE), 8400 Winterthur, Switzerland)

Abstract

This paper started with the explanation of the conditions for using the momentum equation and with the presentation of the actuator disc theory. Focusing on the flow model used in actuator disk theory, both the Froude-Rankine theorem and Betz’s law have been examined. It has been found that the Froude-Rankine theorem is not justified because a stream-tube that is used as the control volume does not really exist (pseudo stream-tube). The theorem is also not justified because an unfounded velocity ( v 2 ) is used to connect the thrust of the actuator disc with the total power loss. Two flaws have been identified in Betz’s law. First, the use of both the unjustified Froude-Rankine theorem and the incorrect flow model totally violates the condition of determining the thrust of the actuator disc using the momentum equation. Second, the unfounded velocity ( v 2 ) from the Froude-Rankine theorem is misinterpreted and used for the volumetric flow rate through the actuator disc. These two main flaws lead to diverse computational contradictions and paradoxes, particularly when considering the case of an impermeable circular disc. The flaws in Betz’s law become evident when the law is applied to a rectangular actuator plate of infinite length. The possible solution for the actuator disc flow has been presented. This includes the additional consideration of energy dissipation in the flow downstream of the actuator disc, similar to the method used to calculate the Borda-Carnot shock loss.

Suggested Citation

  • Zh. Zhang, 2022. "Conceptual Errors in Actuator Disc Theory and Betz’s Law for Wind Turbines," Energies, MDPI, vol. 15(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5902-:d:888321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5902/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5902/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Zhenye & Chen, Jin & Shen, Wen Zhong & Zhu, Wei Jun, 2016. "Improved blade element momentum theory for wind turbine aerodynamic computations," Renewable Energy, Elsevier, vol. 96(PA), pages 824-831.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    2. Huilai Ren & Xiaodong Zhang & Shun Kang & Sichao Liang, 2018. "Actuator Disc Approach of Wind Turbine Wake Simulation Considering Balance of Turbulence Kinetic Energy," Energies, MDPI, vol. 12(1), pages 1-19, December.
    3. Wenbin Su & Hongbo Wei & Penghua Guo & Qiao Hu & Mengyuan Guo & Yuanjie Zhou & Dayu Zhang & Zhufeng Lei & Chaohui Wang, 2021. "Research on Hydraulic Conversion Technology of Small Ocean Current Turbines for Low-Flow Current Energy Generation," Energies, MDPI, vol. 14(20), pages 1-19, October.
    4. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    5. Hailay Kiros Kelele & Lars Frøyd & Mulu Bayray Kahsay & Torbjørn Kristian Nielsen, 2022. "Characterization of Aerodynamics of Small Wind Turbine Blade for Enhanced Performance and Low Cost of Energy," Energies, MDPI, vol. 15(21), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5902-:d:888321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.