IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5183-d864879.html
   My bibliography  Save this article

Modeling and Simulation of Electric Motors Using Lightweight Materials

Author

Listed:
  • Nikita Gobichettipalayam Boopathi

    (Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore 632 014, India)

  • Manoj Shrivatsaan Muthuraman

    (Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore 632 014, India)

  • Ryszad Palka

    (Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland)

  • Marcin Wardach

    (Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland)

  • Pawel Prajzendanc

    (Faculty of Electrical Engineering, West Pomeranian University of Technology in Szczecin, Sikorskiego 37, 70-313 Szczecin, Poland)

  • Edison Gundabattini

    (Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore 632 014, India)

  • Raja Singh Rassiah

    (Advanced Drives Laboratory, Department of Energy and Power Electronics, Vellore Institute of Technology, Vellore 632 014, India)

  • Darius Gnanaraj Solomon

    (Department of Design and Automation, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore 632 014, India)

Abstract

Electric motors are utilitarian devices of great potential as they can limit the amount of pollution by drastically reducing the release of harmful gases. The implementation of the right type of advanced materials plays a vital role in the amelioration of modern automobiles while maintaining and/or improving the performance and efficiency of the electric motor. The use of lightweight materials could result in a better-performing vehicle that can be much less heavy. The replacement of regular cast iron, steel, and aluminum with lightweight materials such as fiber-reinforced polymer, carbon fiber, and polymer composites can reduce the weight of the motor without impacting its performance and improve its energy-saving capacity. This paper explores a way to reduce motor weight by employing a PA6GF30 30% glass fiber-reinforced polymer casing to reduce the weight of the motor while making cooling system modifications. This material was applied to the motor casing, which resulted in a significant reduction in weight compared to the water-cooled electric motor of aluminum (Alloy 195 cast) casing.

Suggested Citation

  • Nikita Gobichettipalayam Boopathi & Manoj Shrivatsaan Muthuraman & Ryszad Palka & Marcin Wardach & Pawel Prajzendanc & Edison Gundabattini & Raja Singh Rassiah & Darius Gnanaraj Solomon, 2022. "Modeling and Simulation of Electric Motors Using Lightweight Materials," Energies, MDPI, vol. 15(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5183-:d:864879
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ryszard Palka, 2022. "The Performance of Induction Machines," Energies, MDPI, vol. 15(9), pages 1-4, April.
    2. Ryszard Palka & Konrad Woronowicz, 2021. "Linear Induction Motors in Transportation Systems," Energies, MDPI, vol. 14(9), pages 1-22, April.
    3. Marcin Wardach & Piotr Paplicki & Ryszard Palka, 2018. "A Hybrid Excited Machine with Flux Barriers and Magnetic Bridges," Energies, MDPI, vol. 11(3), pages 1-8, March.
    4. Ryszard Palka & Marcin Wardach, 2022. "Design and Application of Electrical Machines," Energies, MDPI, vol. 15(2), pages 1-7, January.
    5. Bin Li & Xue Li & Shaopeng Wang & Rongmei Liu & Youhua Wang & Zhiwei Lin, 2022. "Analysis and Cogging Torque Minimization of a Novel Flux Reversal Claw Pole Machine with Soft Magnetic Composite Cores," Energies, MDPI, vol. 15(4), pages 1-13, February.
    6. Marcin Wardach & Ryszard Palka & Piotr Paplicki & Pawel Prajzendanc & Tomasz Zarebski, 2020. "Modern Hybrid Excited Electric Machines," Energies, MDPI, vol. 13(22), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sameer Madhavan & Raunak Devdatta P B & Edison Gundabattini & Arkadiusz Mystkowski, 2022. "Thermal Analysis and Heat Management Strategies for an Induction Motor, a Review," Energies, MDPI, vol. 15(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Ferreira da Silva & João F. P. Fernandes & Paulo José da Costa Branco, 2022. "Superconducting Electric Power Systems: R&D Advancements," Energies, MDPI, vol. 15(19), pages 1-10, October.
    2. Marek Michalczuk & Marcin Nikoniuk & Paweł Radziszewski, 2021. "Multi-Inverter Linear Motor Based Vehicle Propulsion System for a Small Cargo Transportation," Energies, MDPI, vol. 14(15), pages 1-16, July.
    3. Gustav Mörée & Mats Leijon, 2022. "Overview of Hybrid Excitation in Electrical Machines," Energies, MDPI, vol. 15(19), pages 1-38, October.
    4. Ryszard Palka, 2022. "The Performance of Induction Machines," Energies, MDPI, vol. 15(9), pages 1-4, April.
    5. Siddique Akbar & Faisal Khan & Wasiq Ullah & Basharat Ullah & Ahmad H. Milyani & Abdullah Ahmed Azhari, 2022. "Performance Analysis and Optimization of a Novel Outer Rotor Field-Excited Flux-Switching Machine with Combined Semi-Closed and Open Slots Stator," Energies, MDPI, vol. 15(20), pages 1-17, October.
    6. Krzysztof Tomczyk & Piotr Beńko, 2022. "Analysis of the Upper Bound of Dynamic Error Obtained during Temperature Measurements," Energies, MDPI, vol. 15(19), pages 1-13, October.
    7. Xingxing Wang & Peilin Ye & Yujie Zhang & Hongjun Ni & Yelin Deng & Shuaishuai Lv & Yinnan Yuan & Yu Zhu, 2022. "Parameter Optimization Method for Power System of Medium-Sized Bus Based on Orthogonal Test," Energies, MDPI, vol. 15(19), pages 1-26, October.
    8. Pawel Prajzendanc & Piotr Paplicki, 2022. "Performance Evaluation of an Axial Flux Machine with a Hybrid Excitation Design," Energies, MDPI, vol. 15(8), pages 1-11, April.
    9. Ryszard Palka & Kamil Cierzniewski & Marcin Wardach & Pawel Prajzendanc, 2023. "Research on Innovative Hybrid Excited Synchronous Machine," Energies, MDPI, vol. 16(18), pages 1-14, September.
    10. Marcin Wardach & Pawel Prajzendanc & Ryszard Palka & Kamil Cierzniewski & Rafal Pstrokonski & Michal Cichowicz & Szymon Pacholski & Jakub Ciurus & Chen Hao, 2022. "Hybrid-Excited Permanent Magnet-Assisted Synchronous Reluctance Machine," Energies, MDPI, vol. 15(9), pages 1-13, April.
    11. Marcin Wardach & Michal Bonislawski & Ryszard Palka & Piotr Paplicki & Pawel Prajzendanc, 2019. "Hybrid Excited Synchronous Machine with Wireless Supply Control System," Energies, MDPI, vol. 12(16), pages 1-12, August.
    12. Yufeng Zhang & Mingling Gao & Lei Wang & Xueyi Zhang & Mingjun Xu & Wenjing Hu & Luyao Wang, 2023. "Study of Electromagnetic Characteristics of Brushless Reverse Claw-Pole Electrically Excited Generators for Automobiles," Energies, MDPI, vol. 16(6), pages 1-15, March.
    13. Victor Goman & Vladimir Prakht & Vladimir Dmitrievskii & Fedor Sarapulov, 2021. "Analysis of Coupled Thermal and Electromagnetic Processes in Linear Induction Motors Based on a Three-Dimensional Thermal Model," Mathematics, MDPI, vol. 10(1), pages 1-20, December.
    14. Youguang Guo & Xin Ba & Lin Liu & Haiyan Lu & Gang Lei & Wenliang Yin & Jianguo Zhu, 2023. "A Review of Electric Motors with Soft Magnetic Composite Cores for Electric Drives," Energies, MDPI, vol. 16(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5183-:d:864879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.