IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5074-d860781.html
   My bibliography  Save this article

The Impact of Airspace Discretization on the Energy Consumption of Autonomous Unmanned Aerial Vehicles (Drones)

Author

Listed:
  • Mo ElSayed

    (Department of Civil Engineering, Faculty of Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada)

  • Moataz Mohamed

    (Department of Civil Engineering, Faculty of Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada)

Abstract

Promising massive emissions reduction and energy savings, the utilization of autonomous unmanned aerial vehicles (UAVs) in last-mile parcel delivery is continuously expanding. However, the limited UAV range deters their widescale adoption to replace ground modes of transportation. Moreover, real-world data on the impact of different parameters on the operation, emissions, and energy consumption is scarce. This study aims to assess the impact of airspace planning and discretization on the energy consumption of autonomous UAVs. We utilize a novel open-source comprehensive UAV autonomous programming framework and a digital-twin model to simulate real-world three-dimensional operation. The framework integrates airspace policies, UAV kinematics, and autonomy to accurately estimate the operational energy consumption via an experimentally verified energy model. In the simulated case study, airspace is discretized by both a traditional Cartesian method and a novel dynamic 4D discretization ( Skyroutes ) method. This allows for the comparison of different routing and trajectory planning algorithms for ten missions. The results show a variation in the energy consumption by up to 50%, which demonstrates the criticality of airspace discretization and planning on UAV charging infrastructure design, greenhouse gas emissions reduction, and airspace management.

Suggested Citation

  • Mo ElSayed & Moataz Mohamed, 2022. "The Impact of Airspace Discretization on the Energy Consumption of Autonomous Unmanned Aerial Vehicles (Drones)," Energies, MDPI, vol. 15(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5074-:d:860781
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5074/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milena Kajba & Borut Jereb & Tina Cvahte Ojsteršek, 2023. "Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach," Energies, MDPI, vol. 16(9), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5074-:d:860781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.