IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8588-d706768.html
   My bibliography  Save this article

Methodology for Assessing the Stability of Drilling Rigs Based on Analytical Tests

Author

Listed:
  • Łukasz Bołoz

    (Department of Machinery Engineering and Transport, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, A. Mickiewicza Av. 30, 30-059 Krakow, Poland)

  • Artur Kozłowski

    (Łukasiewicz Research Network–Institute of Innovative Technologies EMAG, Leopolda 31, 40-189 Katowice, Poland)

Abstract

Underground mining machines, such as wheel-tyre drilling rigs, are articulated and equipped with booms that project far beyond the undercarriage. Such a structure makes these machines prone to losing stability. Hence, it is necessary to analyse the distribution of masses and geometry as well as their broadly understood stability during the entire design process, taking into account many factors resulting from the manner and conditions of their operation. However, there are no appropriate computational models that would enable analytical tests to be carried out for machines with this kind of construction. This article is concerned with the author’s computational model, which allows the stability of single- and twin-boom drilling rigs to be quickly assessed. The model makes it possible to perform analyses without having to solve differential equations that are present in dynamic models or using specialist software based on CAD and CAE tools. The developed model allows determination of the pressure of wheels and jacks as a function of many important parameters and variables. Additionally, the distances of the centre of gravity from the tipping edge are calculated. The developed computational model was verified by comparing the obtained results with the results of the full dynamic model, the results of model tests carried out in the CAD/CAE program, and the results of empirical tests of wheel and jack pressures on the ground for the selected drilling rig. The model was subjected to verification and validation, which proved that it was fully correct and useful. The model was used to prepare a practical and user-friendly calculation sheet. Apart from the numerical values, the calculation sheet contains a graphical representation of the machine, the location of the centre of gravity, the tipping edges, as well as graphs of the wheel and jack pressures. Next, analytical tests of the stability of the selected drilling rig were carried out. The obtained calculation results are consistent with the results of empirical research. The computational model and the spreadsheet provide handy tools used during the design process by one of the Polish company’s producing drilling rigs.

Suggested Citation

  • Łukasz Bołoz & Artur Kozłowski, 2021. "Methodology for Assessing the Stability of Drilling Rigs Based on Analytical Tests," Energies, MDPI, vol. 14(24), pages 1-29, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8588-:d:706768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Radosław Waloski & Waldemar Korzeniowski & Łukasz Bołoz & Waldemar Rączka, 2021. "Identification of Rock Mass Critical Discontinuities While Borehole Drilling," Energies, MDPI, vol. 14(10), pages 1-21, May.
    2. Jarosław Joostberens & Arkadiusz Pawlikowski & Dariusz Prostański & Krzysztof Nieśpiałowski, 2021. "Method for Assessment of Operation of Analog Filters Installed in the Measuring Lines for Electrical Quantities of a Mining Machine’s Converter Power Supply System," Energies, MDPI, vol. 14(9), pages 1-15, April.
    3. Krzysztof Skrzypkowski, 2020. "Case Studies of Rock Bolt Support Loads and Rock Mass Monitoring for the Room and Pillar Method in the Legnica-Głogów Copper District in Poland," Energies, MDPI, vol. 13(11), pages 1-20, June.
    4. Paweł Kamiński & Artur Dyczko & Dariusz Prostański, 2021. "Virtual Simulations of a New Construction of the Artificial Shaft Bottom (Shaft Safety Platform) for Use in Mine Shafts," Energies, MDPI, vol. 14(8), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedetta Antonielli & Alessandra Sciortino & Stefano Scancella & Francesca Bozzano & Paolo Mazzanti, 2021. "Tracking Deformation Processes at the Legnica Glogow Copper District (Poland) by Satellite InSAR—I: Room and Pillar Mine District," Land, MDPI, vol. 10(6), pages 1-20, June.
    2. Krzysztof Skrzypkowski, 2020. "Comparative Analysis of the Mining Cribs Models Filled with Gangue," Energies, MDPI, vol. 13(20), pages 1-18, October.
    3. Tomasz Rokita & Paweł Kamiński & Hubert Ruta & Zbigniew Szkudlarek, 2021. "CFD Simulations of the New Construction of Light Brattice Wall for Mine Shafts," Energies, MDPI, vol. 14(21), pages 1-15, November.
    4. Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.
    5. Xiaodong Ji & Minjun Zhang & Yuanyuan Qu & Hai Jiang & Miao Wu, 2021. "Travel Dynamics Analysis and Intelligent Path Rectification Planning of a Roadheader on a Roadway," Energies, MDPI, vol. 14(21), pages 1-21, November.
    6. Artur Kozłowski & Łukasz Bołoz, 2021. "Design and Research on Power Systems and Algorithms for Controlling Electric Underground Mining Machines Powered by Batteries," Energies, MDPI, vol. 14(13), pages 1-21, July.
    7. Krzysztof Skrzypkowski, 2021. "An Experimental Investigation into the Stress-Strain Characteristic under Static and Quasi-Static Loading for Partially Embedded Rock Bolts," Energies, MDPI, vol. 14(5), pages 1-17, March.
    8. Yubing Huang & Bei Jiang & Yukun Ma & Huayong Wei & Jincheng Zang & Xiang Gao, 2021. "Study on Asymmetric Failure and Control Measures of Lining in Deep Large Section Chamber," Energies, MDPI, vol. 14(14), pages 1-14, July.
    9. Yongkang Yang & Xuecong Xu & Chenlong Wang, 2023. "Study on the Mechanism of Surrounding Rock Deformation and Its Control for Roof Cutting Retained Gob-Side Entry in Close-Distance Coal Seams Co-Mining," Energies, MDPI, vol. 16(11), pages 1-17, May.
    10. Krzysztof Lalik & Ireneusz Dominik & Paweł Gut & Krzysztof Skrzypkowski & Waldemar Korzeniowski & Krzysztof Zagórski, 2021. "Non-Destructive Acoustical Rock Bolt Testing System with Intelligent Filtering in Salt Mine ‘Wieliczka’," Energies, MDPI, vol. 14(17), pages 1-16, September.
    11. Piotr Wróblewski & Wojciech Lewicki, 2021. "A Method of Analyzing the Residual Values of Low-Emission Vehicles Based on a Selected Expert Method Taking into Account Stochastic Operational Parameters," Energies, MDPI, vol. 14(21), pages 1-24, October.
    12. Krzysztof Fuławka & Lech Stolecki & Marcin Szumny & Witold Pytel & Izabela Jaśkiewicz-Proć & Michel Jakić & Michael Nöger & Philipp Hartlieb, 2022. "Roof Fall Hazard Monitoring and Evaluation—State-of-the-Art Review," Energies, MDPI, vol. 15(21), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8588-:d:706768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.