IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8412-d701585.html
   My bibliography  Save this article

Flow and Heat Transfer Characteristics of a Swirling Impinging Jet Issuing from a Threaded Nozzle of 45 Degrees

Author

Listed:
  • Liang Xu

    (State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Tao Yang

    (State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yanhua Sun

    (State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Lei Xi

    (State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Jianmin Gao

    (State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yunlong Li

    (State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

In order to achieve uniform and effective impingement cooling, a swirling jet with a swirling angle of 45° (SIJ 45°) is put forward in this paper. Namely, there are four 45° spiral grooves equipped on the inner wall of the circular hole. The difference in the flow field and heat transfer characteristics between the conventional impinging jet (CIJ) and SIJ 45 ° is compared and analyzed. The spiral channels can increase the heat transfer rate and cooling uniformity because of the action of superimposed airflow. In addition, the thread nozzle brings lower pressure loss, which can reduce the airflow friction while effectively ensuring high heat transfer in the center area of the jet. An experimental system is built to investigate the heat transfer and flow characteristics of the impingement surface. Smoke flow visualization technology is used to explore the complex flow field of the CIJ and SIJ 45 ° , and the heat transfer rate of the target surface is analyzed based on thermocouple data. When 6000 ≤ R e ≤ 30,000 , and 1 ≤ h / d j ≤ 8 , the averaged Nusselt number ( Nu ) correlation for SIJ 45° is established, which is in good agreement with the experimental results. SIJ 45° is an effective measure to replace the CIJ, and the research herein provides some reference for designing the structure of new jets.

Suggested Citation

  • Liang Xu & Tao Yang & Yanhua Sun & Lei Xi & Jianmin Gao & Yunlong Li, 2021. "Flow and Heat Transfer Characteristics of a Swirling Impinging Jet Issuing from a Threaded Nozzle of 45 Degrees," Energies, MDPI, vol. 14(24), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8412-:d:701585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdulrahman H. Alenezi & Abdulrahman Almutairi & Hamad M. Alhajeri & Abdulmajid Addali & Abdelaziz A. A. Gamil, 2018. "Flow Structure and Heat Transfer of Jet Impingement on a Rib-Roughened Flat Plate," Energies, MDPI, vol. 11(6), pages 1-16, June.
    2. Yulong Yang & Han Liu & Weixuan Mao & Zhaojie Song & Haizhu Wang, 2020. "Study on the Impact Pressure of Swirling-Round Supercritical CO 2 Jet Flow and Its Influencing Factors," Energies, MDPI, vol. 14(1), pages 1-15, December.
    3. Pablo Martínez-Filgueira & Ekaitz Zulueta & Ander Sánchez-Chica & Unai Fernández-Gámiz & Josu Soriano, 2019. "Multi-Objective Particle Swarm Based Optimization of an Air Jet Impingement System," Energies, MDPI, vol. 12(9), pages 1-16, April.
    4. Tomasz Kura & Jan Wajs & Elzbieta Fornalik-Wajs & Sasa Kenjeres & Sebastian Gurgul, 2020. "Thermal and Hydrodynamic Phenomena in the Stagnation Zone—Impact of the Inlet Turbulence Characteristics on the Numerical Analyses," Energies, MDPI, vol. 14(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Yan & Ayed, Hamdi & Hashemian, Mehran & Issakhov, Alibek & Jarad, Fahd & Wae-hayee, Makatar, 2021. "Inducing swirl flow inside the pipes of flat-plate solar collector by using multiple nozzles for enhancing thermal performance," Renewable Energy, Elsevier, vol. 180(C), pages 1344-1357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parkpoom Sriromreun & Paranee Sriromreun, 2019. "A Numerical and Experimental Investigation of Dimple Effects on Heat Transfer Enhancement with Impinging Jets," Energies, MDPI, vol. 12(5), pages 1-16, March.
    2. Shuaishuai Sun & Yongbin Wu & Xiaomei Ma & Pengcheng Liu & Fujian Zhang & Peng Liu & Xiaokun Zhang, 2023. "Feasibility and Mechanism of Deep Heavy Oil Recovery by CO 2 -Energized Fracturing Following N 2 Stimulation," Energies, MDPI, vol. 16(3), pages 1-18, January.
    3. Artur J. Jaworski, 2019. "Special Issue “Fluid Flow and Heat Transfer”," Energies, MDPI, vol. 12(16), pages 1-4, August.
    4. Chao Pu & Zhenjian Liu & Ge Pu, 2022. "On the Factors of Impact Pressure in Supercritical CO 2 Phase-Transition Blasting—A Numerical Study," Energies, MDPI, vol. 15(22), pages 1-15, November.
    5. Thomas Jackowski & Maximilian Elfner & Hans-Jörg Bauer & Katharina Stichling & Marco Hahn, 2021. "Experimental Study of Impingement Effusion Cooled Double-Wall Combustor Liners: Aerodynamic Analysis with Stereo-PIV," Energies, MDPI, vol. 14(19), pages 1-23, September.
    6. Wei Zhang & Huiren Zhu & Guangchao Li, 2020. "Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array," Energies, MDPI, vol. 13(24), pages 1-17, December.
    7. Salman, Mohammad & Park, Myeong Hyeon & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Experimental analysis of single loop solar heat collector with jet impingement over indented dimples," Renewable Energy, Elsevier, vol. 169(C), pages 618-628.
    8. Ander Sánchez-Chica & Ekaitz Zulueta & Daniel Teso-Fz-Betoño & Pablo Martínez-Filgueira & Unai Fernandez-Gamiz, 2019. "ANN-Based Stop Criteria for a Genetic Algorithm Applied to Air Impingement Design," Energies, MDPI, vol. 13(1), pages 1-17, December.
    9. Flavia V. Barbosa & Senhorinha F. C. F. Teixeira & José C. F. Teixeira, 2021. "Experimental and Numerical Study of Multiple Jets Impinging a Step Surface," Energies, MDPI, vol. 14(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8412-:d:701585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.