IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6936-d662036.html
   My bibliography  Save this article

Commercial PV Inverter IEEE 1547.1 Ride-Through Assessments Using an Automated PHIL Test Platform

Author

Listed:
  • Nayeem Ninad

    (CanmetENERGY, Natural Resources Canada (NRCan), Varennes, QC J3X 1S6, Canada)

  • Estefan Apablaza-Arancibia

    (CanmetENERGY, Natural Resources Canada (NRCan), Varennes, QC J3X 1S6, Canada)

  • Michel Bui

    (CanmetENERGY, Natural Resources Canada (NRCan), Varennes, QC J3X 1S6, Canada)

  • Jay Johnson

    (Sandia National Laboratories, Albuquerque, NM 87185, USA)

Abstract

As more countries seek solutions to their de-carbonization targets using renewable energy (RE) technologies, interconnection standards and national grid codes for distributed energy resources (DER) are being updated to support higher penetrations of RE and improve grid stability. Common grid-code revisions mandate DER devices, such as solar inverters and energy storage systems, ride-through (RT) voltage and frequency disturbances. This is necessary because as the percentage of generation from DER increases, there is a greater risk power system faults will cause many or all DER to trip, triggering a substantial load-generation imbalance and possible cascading blackout. This paper demonstrates for the first time a methodology to verify commercial DER devices are compliant to new voltage, frequency, and rate of change of frequency (ROCOF) RT requirements established in IEEE Std. 1547-2018. The methodology incorporates a software automation tool, called the SunSpec System Validation Platform (SVP), in combination with a hardware-in-the-loop (HIL) system to execute the IEEE Std. 1547.1-2020 RT test protocols. In this paper, the approach is validated with two commercial photovoltaic inverters, the test results are analyzed for compliance, and improvements to the test procedure are suggested.

Suggested Citation

  • Nayeem Ninad & Estefan Apablaza-Arancibia & Michel Bui & Jay Johnson, 2021. "Commercial PV Inverter IEEE 1547.1 Ride-Through Assessments Using an Automated PHIL Test Platform," Energies, MDPI, vol. 14(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6936-:d:662036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minh Quan Duong & Sonia Leva & Marco Mussetta & Kim Hung Le, 2018. "A Comparative Study on Controllers for Improving Transient Stability of DFIG Wind Turbines During Large Disturbances," Energies, MDPI, vol. 11(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansoor Soomro & Zubair Ahmed Memon & Mazhar Hussain Baloch & Nayyar Hussain Mirjat & Laveet Kumar & Quynh T. Tran & Gaetano Zizzo, 2023. "Performance Improvement of Grid-Integrated Doubly Fed Induction Generator under Asymmetrical and Symmetrical Faults," Energies, MDPI, vol. 16(8), pages 1-20, April.
    2. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    3. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    4. Javier Carroquino & José-Luis Bernal-Agustín & Rodolfo Dufo-López, 2019. "Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    5. Ahmed G. Abo-Khalil & Ali S. Alghamdi & Ali M. Eltamaly & M. S. Al-Saud & Praveen R. P. & Khairy Sayed & G. R. Bindu & Iskander Tlili, 2019. "Design of State Feedback Current Controller for Fast Synchronization of DFIG in Wind Power Generation Systems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    6. David J. Rincon & Maria A. Mantilla & Juan M. Rey & Miguel Garnica & Damien Guilbert, 2023. "An Overview of Flexible Current Control Strategies Applied to LVRT Capability for Grid-Connected Inverters," Energies, MDPI, vol. 16(3), pages 1-20, January.
    7. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    8. Mahmoud Rihan & Mahmoud Nasrallah & Barkat Hasanin & Adel El-Shahat, 2022. "A Proposed Controllable Crowbar for a Brushless Doubly-Fed Reluctance Generator, a Grid-Integrated Wind Turbine," Energies, MDPI, vol. 15(11), pages 1-29, May.
    9. Sen Song & Yihua Hu & Kai Ni & Joseph Yan & Guipeng Chen & Huiqing Wen & Xianming Ye, 2018. "Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    10. Thales Ramos & Manoel F. Medeiros Júnior & Ricardo Pinheiro & Arthur Medeiros, 2019. "Slip Control of a Squirrel Cage Induction Generator Driven by an Electromagnetic Frequency Regulator to Achieve the Maximum Power Point Tracking," Energies, MDPI, vol. 12(11), pages 1-19, June.
    11. Heng Nian & Xiao Jin, 2021. "Modeling and Analysis of Transient Reactive Power Characteristics of DFIG Considering Crowbar Circuit under Ultra HVDC Commutation Failure," Energies, MDPI, vol. 14(10), pages 1-17, May.
    12. Woon-Gyu Lee & Thai-Thanh Nguyen & Hyeong-Jun Yoo & Hak-Man Kim, 2018. "Low-Voltage Ride-Through Operation of Grid-Connected Microgrid Using Consensus-Based Distributed Control," Energies, MDPI, vol. 11(11), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6936-:d:662036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.