IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6538-d654124.html
   My bibliography  Save this article

Integrated Uncertainty/Disturbance Suppression Based on Improved Adaptive Sliding Mode Controller for PMSM Drives

Author

Listed:
  • Mingfei Huang

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yongting Deng

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Hongwen Li

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Meng Shao

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Jing Liu

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

Abstract

Permanent magnet synchronous motors (PMSMs) have attracted great attention in the field of electric drive system. However, the disturbances caused by parameter mismatching, model uncertainty, external load and torque ripple seriously weaken the control accuracy. The traditional adaptive sliding mode control (ASMC) methodology can address slow-varying uncertainties/disturbances whose frequencies are located at the bandwidth of the filter used to design the adaptive law well; however, it has been barely discussed with respect to the periodic situation. In this paper, we extend the ASMC arrangement to periodic case to suppress the torque ripple by using a series-structure resonant controller. Firstly, a typical SMC is designed to force the tracking error of speed to converge to zero and obtain a certain capacity to disturbance. Then, the improved adaptive law is incorporated to estimate the lumped disturbance and torque ripple. The improved adaptive law is enhanced by embedding the resonant controller, which can obtain a better estimating result for torque ripple with repetitive feature. Finally, simulation and experimental results with PI, SMC and proposed methods are compared to verify the effectiveness of the developed controller.

Suggested Citation

  • Mingfei Huang & Yongting Deng & Hongwen Li & Meng Shao & Jing Liu, 2021. "Integrated Uncertainty/Disturbance Suppression Based on Improved Adaptive Sliding Mode Controller for PMSM Drives," Energies, MDPI, vol. 14(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6538-:d:654124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng Shao & Yongting Deng & Hongwen Li & Jing Liu & Qiang Fei, 2019. "Sliding Mode Observer-Based Parameter Identification and Disturbance Compensation for Optimizing the Mode Predictive Control of PMSM," Energies, MDPI, vol. 12(10), pages 1-22, May.
    2. Fardila Mohd Zaihidee & Saad Mekhilef & Marizan Mubin, 2019. "Robust Speed Control of PMSM Using Sliding Mode Control (SMC)—A Review," Energies, MDPI, vol. 12(9), pages 1-27, May.
    3. Kai Zhou & Min Ai & Yancheng Sun & Xiaogang Wu & Ran Li, 2019. "PMSM Vector Control Strategy Based on Active Disturbance Rejection Controller," Energies, MDPI, vol. 12(20), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenjie Gong & Xin Ba & Chengning Zhang & Youguang Guo, 2022. "Robust Sliding Mode Control of the Permanent Magnet Synchronous Motor with an Improved Power Reaching Law," Energies, MDPI, vol. 15(5), pages 1-13, March.
    2. Shenghui Li & Zhenxing Sun & Ying Shi, 2022. "A Composite Control Method for Permanent Magnet Synchronous Motor System with Nonlinearly Parameterized-Uncertainties," Energies, MDPI, vol. 15(19), pages 1-15, October.
    3. Shu Xiong & Jian Pan & Yucui Yang, 2022. "Robust Decoupling Vector Control of Interior Permanent Magnet Synchronous Motor Used in Electric Vehicles with Reduced Parameter Mismatch Impacts," Sustainability, MDPI, vol. 14(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Jiang & Fan Yang & Songjun Sun & Kai Yang, 2022. "Improved Linear Active Disturbance Rejection Control for IPMSM Drives Considering Load Inertia Mismatch," Energies, MDPI, vol. 15(3), pages 1-22, February.
    2. Marcel Nicola & Claudiu-Ionel Nicola, 2022. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning," Mathematics, MDPI, vol. 10(24), pages 1-34, December.
    3. Zhenjie Gong & Xin Ba & Chengning Zhang & Youguang Guo, 2022. "Robust Sliding Mode Control of the Permanent Magnet Synchronous Motor with an Improved Power Reaching Law," Energies, MDPI, vol. 15(5), pages 1-13, March.
    4. Fabiano C. Rosa & Edson Bim, 2020. "A Constrained Non-Linear Model Predictive Controller for the Rotor Flux-Oriented Control of an Induction Motor Drive," Energies, MDPI, vol. 13(15), pages 1-18, July.
    5. Kifayat Ullah & Jaroslaw Guzinski & Adeel Feroz Mirza, 2022. "Critical Review on Robust Speed Control Techniques for Permanent Magnet Synchronous Motor (PMSM) Speed Regulation," Energies, MDPI, vol. 15(3), pages 1-13, February.
    6. Aleš Hace, 2019. "The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft," Energies, MDPI, vol. 12(15), pages 1-31, August.
    7. Roland Kasper & Dmytro Golovakha, 2020. "Combined Optimal Torque Feedforward and Modal Current Feedback Control for Low Inductance PM Motors," Energies, MDPI, vol. 13(23), pages 1-16, November.
    8. Btissam Majout & Houda El Alami & Hassna Salime & Nada Zine Laabidine & Youness El Mourabit & Saad Motahhir & Manale Bouderbala & Mohammed Karim & Badre Bossoufi, 2022. "A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG," Energies, MDPI, vol. 15(17), pages 1-41, August.
    9. Fawaz W. Alsaade & Mohammed S. Al-zahrani, 2023. "A Novel Fault-Tolerant Super-Twisting Control Technique for Chaos Stabilization in Fractional-Order Arch MEMS Resonators," Mathematics, MDPI, vol. 11(10), pages 1-18, May.
    10. Marcin Kamiński & Krzysztof Szabat, 2021. "Adaptive Control Structure with Neural Data Processing Applied for Electrical Drive with Elastic Shaft," Energies, MDPI, vol. 14(12), pages 1-26, June.
    11. Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.
    12. Yoon-Seong Lee & Kyoung-Min Choo & Won-Sang Jeong & Chang-Hee Lee & Junsin Yi & Chung-Yuen Won, 2023. "A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems," Energies, MDPI, vol. 16(3), pages 1-17, January.
    13. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    14. Hassam Muazzam & Mohamad Khairi Ishak & Athar Hanif & Ali Arshad Uppal & AI Bhatti & Nor Ashidi Mat Isa, 2022. "Virtual Sensor Using a Super Twisting Algorithm Based Uniform Robust Exact Differentiator for Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-18, February.
    15. Jiachun Lin & Yuteng Zhao & Pan Zhang & Junjie Wang & Hao Su, 2021. "Research on Compound Sliding Mode Control of a Permanent Magnet Synchronous Motor in Electromechanical Actuators," Energies, MDPI, vol. 14(21), pages 1-17, November.
    16. Mingyuan Hu & Hyeongki Ahn & Yoonuh Chung & Kwanho You, 2023. "Speed Regulation for PMSM with Super-Twisting Sliding-Mode Controller via Disturbance Observer," Mathematics, MDPI, vol. 11(7), pages 1-15, March.
    17. Abhinandan Routray & Yiza Srikanth Reddy & Sung-ho Hur, 2023. "Predictive Control of a Wind Turbine Based on Neural Network-Based Wind Speed Estimation," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    18. Muhammad Usama & Jaehong Kim, 2021. "Low-Speed Transient and Steady-State Performance Analysis of IPMSM for Nonlinear Speed Regulator with Effective Compensation Scheme," Energies, MDPI, vol. 14(20), pages 1-16, October.
    19. Irfan Sami & Shafaat Ullah & Zahoor Ali & Nasim Ullah & Jong-Suk Ro, 2020. "A Super Twisting Fractional Order Terminal Sliding Mode Control for DFIG-Based Wind Energy Conversion System," Energies, MDPI, vol. 13(9), pages 1-20, May.
    20. Pingyue Zhang & Jingyu Zhang & Yingshun Li & Yuhu Wu, 2020. "Nonlinear Active Disturbance Rejection Control of VGT-EGR System in Diesel Engines," Energies, MDPI, vol. 13(20), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6538-:d:654124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.