IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5955-d639167.html
   My bibliography  Save this article

Influence of Driving Direction on the Stability of a Group of Headings Located in a Field of High Horizontal Stresses in the Polish Underground Copper Mines

Author

Listed:
  • Karolina Adach-Pawelus

    (Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Daniel Pawelus

    (Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

This paper investigates the problem of stability in a group of headings driven in high horizontal stress fields in the copper ore mines of the Legnica-Glogow Copper Belt (LGCB). The headings are protected with the roof bolting system. This problem is of high importance due to special safety regulations which apply in mining workings serving as airways and haulageways. The analysis was performed for a group of four headings driven in the geological and mining conditions of the Polkowice-Sieroszowice mine. The stability of the headings was evaluated with the use of Finite Element Method (FEM). The parameters of the rocks used in the numerical modeling have been determined on the basis of the Hoek–Brown classification, with the use of the RocLab 1.0 software. The parameters of the stress field have been identified on the basis of in situ measurements, which were performed in the Polkowice-Sieroszowice mine in 2012. The measurements were carried out with the use of the overcoring method, which is a stress relief method. A CSIRO HI probe was used as the measuring device. The tests were carried out on three measuring points, on which six successful tests were performed. The measurements confirmed the presence of high horizontal stresses in the rock mass. Numerical modeling was performed using the Phase2 v.8.0 software, in a triaxial stress state and in a plane strain state. The rock mass was described with an elastic-plastic model with softening. Numerical analyses were based on the Mohr–Coulomb failure criterion. It was assumed that the optimal measure of the stability of the group of headings is the range of the formed zone of yielded rock mass in the excavation roof. Numerical simulations have shown that the direction of driving the headings in the field of increased horizontal stresses may be of key importance for the stability of the headings in LGOM mines. The greatest extent of the yielded rock mass zone in the excavation roof occurred when the group of headings was driven in the direction perpendicular to the direction of the maximum horizontal stress component σ H . The obtained results served to provide an example of the application of a roof bolting system to protect headings driven in unfavorable conditions in a high horizontal stress field.

Suggested Citation

  • Karolina Adach-Pawelus & Daniel Pawelus, 2021. "Influence of Driving Direction on the Stability of a Group of Headings Located in a Field of High Horizontal Stresses in the Polish Underground Copper Mines," Energies, MDPI, vol. 14(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5955-:d:639167
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alireza Salmachi & Mojtaba Rajabi & Carmine Wainman & Steven Mackie & Peter McCabe & Bronwyn Camac & Christopher Clarkson, 2021. "History, Geology, In Situ Stress Pattern, Gas Content and Permeability of Coal Seam Gas Basins in Australia: A Review," Energies, MDPI, vol. 14(9), pages 1-37, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karolina Adach-Pawelus & Natalia Szyry, 2022. "Influence of a Type of Rock Mass on the Stability of Headings in Polish Underground Copper Mines Based on Boundary Element Method," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Karolina Adach-Pawelus, 2022. "Back-Calculation Method for Estimation of Geomechanical Parameters in Numerical Modeling Based on In-Situ Measurements and Statistical Methods," Energies, MDPI, vol. 15(13), pages 1-17, June.
    3. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.
    4. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    5. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangchao Zhang & You Li & Xiangjun Meng & Guangzhe Tao & Lei Wang & Hanqing Guo & Chuanqi Zhu & Hao Zuo & Zhi Qu, 2022. "Distribution Law of In Situ Stress and Its Engineering Application in Rock Burst Control in Juye Mining Area," Energies, MDPI, vol. 15(4), pages 1-17, February.
    2. Suyang Zhu & Alireza Salmachi, 2021. "Flowing Material Balance and Rate-Transient Analysis of Horizontal Wells in Under-Saturated Coal Seam Gas Reservoirs: A Case Study from the Qinshui Basin, China," Energies, MDPI, vol. 14(16), pages 1-24, August.
    3. Lin Li & Shufan Zhang & Zhiqiang Li & Xiangjun Chen & Lin Wang & Shuailong Feng, 2022. "An Experimental and Numerical Study of Abrupt Changes in Coal Permeability with Gas Flowing through Fracture-Pore Structure," Energies, MDPI, vol. 15(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5955-:d:639167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.