IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3886-d583844.html
   My bibliography  Save this article

Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns

Author

Listed:
  • Marek Florkowski

    (Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

In the resilient and reliable electrical power system, the condition of high voltage insulation plays a crucial role. In the field of high voltage insulation integrity, the partial discharge (PD) inception and development trends are essential for assessment criteria in diagnostics systems. The observed trend to employ more and more sophisticated algorithms with machine learning features and artificial intelligence (AI) elements is observed everywhere. The classification and identification of features in PD images is perceived as a critical requirement for an effective high voltage insulation diagnosis. In this context, techniques allowing for anomaly detection, trends observation, and feature extraction in partial discharge patterns are important. In this paper, the application of few algorithms belonging to image processing, machine learning and optical flow is presented. The feature extraction refers to image segmentation and detection of coherent forms in the images. The anomaly detection algorithms can trigger early detection of the trend changes or the appearance of a new discharge form, and hence are suitable for PD monitoring applications. Anomaly detection can also handle transients and disturbances that appear in the PD image as an indication of an abnormal state. The future monitoring systems should be equipped with trend evolution algorithms. In this context, two examples of insulation aging and application of PD-based monitoring are shown. The first one refers to deep convolutional neural networks used for classification of deterioration stages in high voltage insulation. The latter one demonstrates application of optical flow approach for motion detection in partial discharge images. The motivation for the research was the strive to machine-controlled pattern analysis, leading towards intelligent PD-based diagnostics.

Suggested Citation

  • Marek Florkowski, 2021. "Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns," Energies, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3886-:d:583844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irfan Ullah & Rehan Ullah Khan & Fan Yang & Lunchakorn Wuttisittikulkij, 2020. "Deep Learning Image-Based Defect Detection in High Voltage Electrical Equipment," Energies, MDPI, vol. 13(2), pages 1-17, January.
    2. Marek Florkowski & Dariusz Krześniak & Maciej Kuniewski & Paweł Zydroń, 2020. "Partial Discharge Imaging Correlated with Phase-Resolved Patterns in Non-Uniform Electric Fields with Various Dielectric Barrier Materials," Energies, MDPI, vol. 13(11), pages 1-15, May.
    3. Abdullahi Abubakar Mas’ud & Ricardo Albarracín & Jorge Alfredo Ardila-Rey & Firdaus Muhammad-Sukki & Hazlee Azil Illias & Nurul Aini Bani & Abu Bakar Munir, 2016. "Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions," Energies, MDPI, vol. 9(8), pages 1-18, July.
    4. Vo-Nguyen Tuyet-Doan & Tien-Tung Nguyen & Minh-Tuan Nguyen & Jong-Ho Lee & Yong-Hwa Kim, 2020. "Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 13(8), pages 1-16, April.
    5. Simeng Song & Yong Qian & Hui Wang & Yiming Zang & Gehao Sheng & Xiuchen Jiang, 2020. "Partial Discharge Pattern Recognition Based on 3D Graphs of Phase Resolved Pulse Sequence," Energies, MDPI, vol. 13(16), pages 1-16, August.
    6. Marek Florkowski, 2020. "Classification of Partial Discharge Images Using Deep Convolutional Neural Networks," Energies, MDPI, vol. 13(20), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo de Oliveira Machado & Luciano Coutinho Gomes & Augusto Wohlgemuth Fleury Veloso da Silveira & Carlos Eduardo Tavares & Darizon Alves de Andrade, 2022. "Impacts of Harmonic Voltage Distortions on the Dynamic Behavior and the PRPD Patterns of Partial Discharges in an Air Cavity Inside a Solid Dielectric Material," Energies, MDPI, vol. 15(7), pages 1-20, April.
    2. Nan Shao & Yu Chen, 2022. "Abnormal Data Detection and Identification Method of Distribution Internet of Things Monitoring Terminal Based on Spatiotemporal Correlation," Energies, MDPI, vol. 15(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Florkowski, 2020. "Classification of Partial Discharge Images Using Deep Convolutional Neural Networks," Energies, MDPI, vol. 13(20), pages 1-17, October.
    2. Jinseok Kim & Ki-Il Kim, 2021. "Partial Discharge Online Detection for Long-Term Operational Sustainability of On-Site Low Voltage Distribution Network Using CNN Transfer Learning," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    3. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
    4. Marek Florkowski, 2023. "Effect of Interplay between Parallel and Perpendicular Magnetic and Electric Fields on Partial Discharges," Energies, MDPI, vol. 16(13), pages 1-16, June.
    5. Jianfeng Zheng & Zhichao Chen & Qun Wang & Hao Qiang & Weiyue Xu, 2022. "GIS Partial Discharge Pattern Recognition Based on Time-Frequency Features and Improved Convolutional Neural Network," Energies, MDPI, vol. 15(19), pages 1-14, October.
    6. Lixiao Mu & Xiaobing Xu & Zhanran Xia & Bin Yang & Haoran Guo & Wenjun Zhou & Chengke Zhou, 2021. "Autonomous Analysis of Infrared Images for Condition Diagnosis of HV Cable Accessories," Energies, MDPI, vol. 14(14), pages 1-15, July.
    7. Ana C. N. Pardauil & Thiago P. Nascimento & Marcelo R. S. Siqueira & Ubiratan H. Bezerra & Werbeston D. Oliveira, 2020. "Combined Approach Using Clustering-Random Forest to Evaluate Partial Discharge Patterns in Hydro Generators," Energies, MDPI, vol. 13(22), pages 1-18, November.
    8. Sara Mantach & Ahmed Ashraf & Hamed Janani & Behzad Kordi, 2021. "A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set," Energies, MDPI, vol. 14(5), pages 1-16, March.
    9. Ju Tang & Xu Yang & Dong Yang & Qiang Yao & Yulong Miao & Chaohai Zhang & Fuping Zeng, 2017. "Using SF 6 Decomposed Component Analysis for the Diagnosis of Partial Discharge Severity Initiated by Free Metal Particle Defect," Energies, MDPI, vol. 10(8), pages 1-17, August.
    10. Ju Tang & Xu Yang & Gaoxiang Ye & Qiang Yao & Yulong Miao & Fuping Zeng, 2017. "Decomposition Characteristics of SF 6 and Partial Discharge Recognition under Negative DC Conditions," Energies, MDPI, vol. 10(4), pages 1-16, April.
    11. Ramon C. F. Araújo & Rodrigo M. S. de Oliveira & Fabrício J. B. Barros, 2022. "Automatic PRPD Image Recognition of Multiple Simultaneous Partial Discharge Sources in On-Line Hydro-Generator Stator Bars," Energies, MDPI, vol. 15(1), pages 1-26, January.
    12. Yuanlin Luo & Zhaohui Li & Hong Wang, 2017. "A Review of Online Partial Discharge Measurement of Large Generators," Energies, MDPI, vol. 10(11), pages 1-32, October.
    13. Mohammed A. Shams & Hussein I. Anis & Mohammed El-Shahat, 2021. "Denoising of Heavily Contaminated Partial Discharge Signals in High-Voltage Cables Using Maximal Overlap Discrete Wavelet Transform," Energies, MDPI, vol. 14(20), pages 1-22, October.
    14. Gustavo de Oliveira Machado & Luciano Coutinho Gomes & Augusto Wohlgemuth Fleury Veloso da Silveira & Carlos Eduardo Tavares & Darizon Alves de Andrade, 2022. "Impacts of Harmonic Voltage Distortions on the Dynamic Behavior and the PRPD Patterns of Partial Discharges in an Air Cavity Inside a Solid Dielectric Material," Energies, MDPI, vol. 15(7), pages 1-20, April.
    15. Alper Aydogan & Fatih Atalar & Aysel Ersoy Yilmaz & Pawel Rozga, 2020. "Using the Method of Harmonic Distortion Analysis in Partial Discharge Assessment in Mineral Oil in a Non-Uniform Electric Field," Energies, MDPI, vol. 13(18), pages 1-18, September.
    16. Minh-Tuan Nguyen & Viet-Hung Nguyen & Suk-Jun Yun & Yong-Hwa Kim, 2018. "Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 11(5), pages 1-13, May.
    17. Jiaying Deng & Wenhai Zhang & Xiaomei Yang, 2019. "Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network," Energies, MDPI, vol. 12(10), pages 1-16, May.
    18. Haresh Kumar & Muhammad Shafiq & Kimmo Kauhaniemi & Mohammed Elmusrati, 2024. "A Review on the Classification of Partial Discharges in Medium-Voltage Cables: Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques," Energies, MDPI, vol. 17(5), pages 1-31, February.
    19. Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Ricardo Albarracín & Firdaus Muhammad-Sukki & Nurul Aini Bani, 2017. "Comparison of the Performance of Artificial Neural Networks and Fuzzy Logic for Recognizing Different Partial Discharge Sources," Energies, MDPI, vol. 10(7), pages 1-20, July.
    20. Ju Tang & Miao Jin & Fuping Zeng & Siyuan Zhou & Xiaoxing Zhang & Yi Yang & Yan Ma, 2017. "Feature Selection for Partial Discharge Severity Assessment in Gas-Insulated Switchgear Based on Minimum Redundancy and Maximum Relevance," Energies, MDPI, vol. 10(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3886-:d:583844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.