IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2676-d362952.html
   My bibliography  Save this article

Partial Discharge Imaging Correlated with Phase-Resolved Patterns in Non-Uniform Electric Fields with Various Dielectric Barrier Materials

Author

Listed:
  • Marek Florkowski

    (Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Dariusz Krześniak

    (ABB Corporate Technology Center, ul. Starowiślna 13a, 31-038 Kraków, Poland)

  • Maciej Kuniewski

    (Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Paweł Zydroń

    (Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

This paper describes a correlation of partial discharge phase-resolved patterns with an optical imaging performed in a non-uniform electric field configuration. The influence of different dielectric barrier materials, placed on the plane electrode, on the discharge propagation and surface landing was investigated. The investigations were focused on the corona at positive polarity of AC high voltage. It was found that the initial positive corona stage is similar for all cases whereas the discharge propagation and surface landing strongly depends on the barrier material properties. The observed streamer discharge modes have been described by the geometrical measures such as stem length, stretch of a discharge profile on the dielectric barrier surface and an hemispherical envelope of discharge filaments. Since various dielectrics reveal different properties of charge accumulation and surface neutralization, the charge memory effect may be visible and can be related to the ability to create and sustain of additional electric field component. It may refer to subsequent discharges as well as to conditions faced at the voltage polarity reversal. The correspondence between different forms of phase-resolved patterns have been associated with the modes of streamer discharges observed by optical imaging. Presented methodology poses huge potential for both scientific investigations on underlying discharge phenomena as well as on the application in future diagnostic systems of HV insulation.

Suggested Citation

  • Marek Florkowski & Dariusz Krześniak & Maciej Kuniewski & Paweł Zydroń, 2020. "Partial Discharge Imaging Correlated with Phase-Resolved Patterns in Non-Uniform Electric Fields with Various Dielectric Barrier Materials," Energies, MDPI, vol. 13(11), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2676-:d:362952
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming Ren & Ming Dong & Jialin Liu, 2016. "Statistical Analysis of Partial Discharges in SF 6 Gas via Optical Detection in Various Spectral Ranges," Energies, MDPI, vol. 9(3), pages 1-15, March.
    2. Disheng Wang & Lin Du & Chenguo Yao, 2019. "Statistical Study on Space Charge effects and Stage Characteristics of Needle-Plate Corona Discharge under DC Voltage," Energies, MDPI, vol. 12(14), pages 1-17, July.
    3. Michał Kozioł & Łukasz Nagi & Michał Kunicki & Ireneusz Urbaniec, 2019. "Radiation in the Optical and UHF Range Emitted by Partial Discharges," Energies, MDPI, vol. 12(22), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alper Aydogan & Fatih Atalar & Aysel Ersoy Yilmaz & Pawel Rozga, 2020. "Using the Method of Harmonic Distortion Analysis in Partial Discharge Assessment in Mineral Oil in a Non-Uniform Electric Field," Energies, MDPI, vol. 13(18), pages 1-18, September.
    2. Marek Florkowski, 2020. "Classification of Partial Discharge Images Using Deep Convolutional Neural Networks," Energies, MDPI, vol. 13(20), pages 1-17, October.
    3. Marek Florkowski, 2021. "Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns," Energies, MDPI, vol. 14(13), pages 1-18, June.
    4. Marek Florkowski, 2023. "Effect of Interplay between Parallel and Perpendicular Magnetic and Electric Fields on Partial Discharges," Energies, MDPI, vol. 16(13), pages 1-16, June.
    5. Marek Florkowski, 2020. "Influence of Insulating Material Properties on Partial Discharges at DC Voltage," Energies, MDPI, vol. 13(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoxin Chen & Chen Li & Liangjin Chen & Hui Wang & Yiming Zang & Weijia Yao, 2020. "Influence of Different Structure and Specification Parameters on the Propagation Characteristics of Optical Signals Generated by GIL Partial Discharge," Energies, MDPI, vol. 13(12), pages 1-18, June.
    2. Łukasz Nagi & Michał Kozioł & Jarosław Zygarlicki, 2020. "Optical Radiation from an Electric Arc at Different Frequencies," Energies, MDPI, vol. 13(7), pages 1-9, April.
    3. Ioannis F. Gonos & Issouf Fofana, 2020. "Special Issue “Selected Papers from the 2018 IEEE International Conference on High Voltage Engineering (ICHVE 2018)”," Energies, MDPI, vol. 13(18), pages 1-5, September.
    4. Jordi-Roger Riba & Santiago Bogarra & Álvaro Gómez-Pau & Manuel Moreno-Eguilaz, 2020. "Experimental Study of the Corona Performance of Aged Sand-Cast Substation Connectors," Energies, MDPI, vol. 13(11), pages 1-13, June.
    5. Emilio Parrado-Hernández & Guillermo Robles & Jorge Alfredo Ardila-Rey & Juan Manuel Martínez-Tarifa, 2018. "Robust Condition Assessment of Electrical Equipment with One Class Support Vector Machines Based on the Measurement of Partial Discharges," Energies, MDPI, vol. 11(3), pages 1-18, February.
    6. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    7. Daria Wotzka & Wojciech Sikorski & Cyprian Szymczak, 2022. "Investigating the Capability of PD-Type Recognition Based on UHF Signals Recorded with Different Antennas Using Supervised Machine Learning," Energies, MDPI, vol. 15(9), pages 1-20, April.
    8. Stefan Tenbohlen & Chandra Prakash Beura & Wojciech Sikorski & Ricardo Albarracín Sánchez & Bruno Albuquerque de Castro & Michael Beltle & Pascal Fehlmann & Martin Judd & Falk Werner & Martin Siegel, 2023. "Frequency Range of UHF PD Measurements in Power Transformers," Energies, MDPI, vol. 16(3), pages 1-21, January.
    9. Ju Tang & Miao Jin & Fuping Zeng & Siyuan Zhou & Xiaoxing Zhang & Yi Yang & Yan Ma, 2017. "Feature Selection for Partial Discharge Severity Assessment in Gas-Insulated Switchgear Based on Minimum Redundancy and Maximum Relevance," Energies, MDPI, vol. 10(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2676-:d:362952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.