IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3819-d581867.html
   My bibliography  Save this article

Soil Diversity and Key Functional Characteristics of Yakutsk City: Largest Urbanized Cryogenic World’s Ecosystem

Author

Listed:
  • Vyacheslav Polyakov

    (Department of Applied Ecology, Faculty of Biology, St. Petersburg State University, 16th Liniya V.O., 29, 199178 St. Petersburg, Russia
    Arctic and Antarctic Research Institute, Beringa St. 38, 199397 St. Petersburg, Russia)

  • Timur Nizamutdinov

    (Department of Applied Ecology, Faculty of Biology, St. Petersburg State University, 16th Liniya V.O., 29, 199178 St. Petersburg, Russia)

  • Evgeny Abakumov

    (Department of Applied Ecology, Faculty of Biology, St. Petersburg State University, 16th Liniya V.O., 29, 199178 St. Petersburg, Russia)

  • Eugeniya Morgun

    (Arctic Research Center of the Yamal-Nenets Autonomous District, Respublikiv St. 20, 629008 Salekhard, Yamal Autonomous Region, Russia)

Abstract

Urban soils are the most vulnerable component of the current terrestrial ecosystem. Due to the anthropogenic influence, various pollutants can accumulate in the soils and have a negative effect on the health of citizens. As a result of the degradation of permafrost landscapes, the disappearance of a number of natural ecosystems, as well as urban areas, is possible. In the course of the development of thermokarst processes, problems arise in the urban environment with the destruction of urban buildings and a decrease in agricultural areas. The ecosystem of Yakutsk city is located in the valley of the Lena River and represents the largest urbanized terrestrial biotope, located in the permafrost-affected bioclimatic and geogenic conditions. This work represents relevant datasets on the physico-chemical, toxicological and agrochemical state of soil cover components in various functional zones of the city. An 3excess of the maximum threshold levels for Zn was noted in the area of active mining within the city borders. From the data obtained of pollution state, the most polluted zone of Yakutsk city is the quarry complex located in relative proximity to the city. In other studied areas of the city, there is no excess of permissible threshold levels for trace elements. According to agrochemical analysis, in Yakutsk city, there is a relatively low content of available agrochemical elements in comparison with other cities located in the permafrost-affected zone.

Suggested Citation

  • Vyacheslav Polyakov & Timur Nizamutdinov & Evgeny Abakumov & Eugeniya Morgun, 2021. "Soil Diversity and Key Functional Characteristics of Yakutsk City: Largest Urbanized Cryogenic World’s Ecosystem," Energies, MDPI, vol. 14(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3819-:d:581867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3819/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3819/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V. E. Romanovsky & D. S. Drozdov & N. G. Oberman & G. V. Malkova & A. L. Kholodov & S. S. Marchenko & N. G. Moskalenko & D. O. Sergeev & N. G. Ukraintseva & A. A. Abramov & D. A. Gilichinsky & A. A. V, 2010. "Thermal state of permafrost in Russia," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 21(2), pages 136-155, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stepan Prokopievich Varlamov & Yuri Borisovich Skachkov & Pavel Nikolaevich Skryabin, 2021. "Long-Term Variability in Ground Thermal State in Central Yakutia’s Tuymaada Valley," Land, MDPI, vol. 10(11), pages 1-22, November.
    2. Galina Malkova & Dmitry Drozdov & Alexander Vasiliev & Andrey Gravis & Gleb Kraev & Yuriy Korostelev & Kirill Nikitin & Pavel Orekhov & Olga Ponomareva & Vladimir Romanovsky & Marat Sadurtdinov & Alex, 2022. "Spatial and Temporal Variability of Permafrost in the Western Part of the Russian Arctic," Energies, MDPI, vol. 15(7), pages 1-19, March.
    3. Mikhail Yu. Filimonov & Yaroslav K. Kamnev & Aleksandr N. Shein & Nataliia A. Vaganova, 2022. "Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring," Land, MDPI, vol. 11(7), pages 1-21, July.
    4. Alyona A. Shestakova & Alexander N. Fedorov & Yaroslav I. Torgovkin & Pavel Y. Konstantinov & Nikolay F. Vasyliev & Svetlana V. Kalinicheva & Vera V. Samsonova & Tetsuya Hiyama & Yoshihiro Iijima & Ho, 2021. "Mapping the Main Characteristics of Permafrost on the Basis of a Permafrost-Landscape Map of Yakutia Using GIS," Land, MDPI, vol. 10(5), pages 1-18, April.
    5. Alexander N. Fedorov & Varvara A. Novopriezzhaya & Nikolay A. Fedorov & Pavel Y. Konstantinov & Vera V. Samsonova, 2020. "Retrospective Analysis of Permafrost Landscape Evolution in Yakutia during the Holocene Warm Intervals," Land, MDPI, vol. 9(11), pages 1-11, November.
    6. Chenzheng Li & Anatoly V. Brouchkov & Viktor G. Cheverev & Andrey V. Sokolov & Kunyang Li, 2022. "Emission of Methane and Carbon Dioxide during Soil Freezing without Permafrost," Energies, MDPI, vol. 15(7), pages 1-11, April.
    7. Shiklomanov, Nikolay & Streletskiy, Dmitry & Suter, Luis & Orttung, Robert & Zamyatina, Nadezhda, 2020. "Dealing with the bust in Vorkuta, Russia," Land Use Policy, Elsevier, vol. 93(C).
    8. Roger C. Creel & Frederieke Miesner & Stiig Wilkenskjeld & Jacqueline Austermann & Pier Paul Overduin, 2024. "Glacial isostatic adjustment reduces past and future Arctic subsea permafrost," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Stepan Varlamov & Pavel Skryabin & Aleksandr Zhirkov & Zhi Wen, 2022. "Monitoring the Permafrost Conditions along Pipeline Routes in Central Yakutia, Russia," Land, MDPI, vol. 11(12), pages 1-15, December.
    10. Wenbing Yu & Fenglei Han & Weibo Liu & Stuart A. Harris, 2016. "Geohazards and thermal regime analysis of oil pipeline along the Qinghai–Tibet Plateau Engineering Corridor," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 193-209, August.
    11. Louise Kessler, 2015. "Estimating the economic impact of the permafrost carbon feedback," GRI Working Papers 219, Grantham Research Institute on Climate Change and the Environment.
    12. Alexander N. Fedorov & Pavel Y. Konstantinov & Nikolay F. Vasiliev & Nikolay I. Basharin & Andrei G. Shepelev & Varvara A. Andreeva & Valerii P. Semenov & Yaroslav I. Torgovkin & Alexey R. Desyatkin &, 2022. "Ice Volumes in Permafrost Landscapes of Arctic Yakutia," Land, MDPI, vol. 11(12), pages 1-11, December.
    13. Stepan P Varlamov & Yuri B Skachkov & Pavel N Skryabin, 2020. "Influence of Climate Change on the Thermal Condition of Yakutia’s Permafrost Landscapes (Chabyda Station)," Land, MDPI, vol. 9(5), pages 1-19, April.
    14. Pavel Konstantinov & Nikolai Basharin & Alexander Fedorov & Yoshihiro Iijima & Varvara Andreeva & Valerii Semenov & Nikolai Vasiliev, 2022. "Impact of Climate Change on the Ground Thermal Regime in the Lower Lena Region, Arctic Central Siberia," Land, MDPI, vol. 12(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3819-:d:581867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.