IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3605-d576704.html
   My bibliography  Save this article

Structural Integrity Evaluation of a Reactor Cavity during a Steam Explosion for External Reactor Vessel Cooling

Author

Listed:
  • Sang-Hyun Park

    (Division of Mechanical Engineering, Korea Maritime & Ocean University, Busan 49112, Korea)

  • Kwang-Hyun Bang

    (Division of Mechanical Engineering, Korea Maritime & Ocean University, Busan 49112, Korea)

  • Jong-Rae Cho

    (Division of Mechanical Engineering, Korea Maritime & Ocean University, Busan 49112, Korea)

Abstract

Nuclear power is a major source of electricity in the international community. However, a significant problem with nuclear power is that, if a severe nuclear accident occurs, radiation may leak and cause great damage. As such, research on nuclear safety has become increasingly popular worldwide. In this paper, the structural integrity of a reactor cavity during a steam explosion—one kind of the aforementioned severe nuclear accidents—was evaluated. Steam explosions are primarily caused by fuel–coolant interactions (FCI), and result from issues in the cooling system that discharges the melt from the reactor core to the outside. A steam explosion can damage the nuclear power plant, and radiation leakage, the greatest concern, may occur. In the Chernobyl or Fukushima Daiichi accidents, significant radiation leakages resulted in damages extending beyond the country of origin. In this paper, a steam explosion was simulated using values given by the transient analysis code for explosive reactions (TRACER-II)—the only steam explosion code in Korea. The walls of the reactor cavity were modeled after the APR-1400 currently operating in Korea. The integrity of the concrete, rebars, and liner plate in the reactor cavity during a steam explosion was evaluated in terms of stress and ductile failure strain limits.

Suggested Citation

  • Sang-Hyun Park & Kwang-Hyun Bang & Jong-Rae Cho, 2021. "Structural Integrity Evaluation of a Reactor Cavity during a Steam Explosion for External Reactor Vessel Cooling," Energies, MDPI, vol. 14(12), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3605-:d:576704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3605/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Song & Ping Zhang & Xiaomin Tian & Famu Huang & Zhiwen Li & Jianjun Liu, 2022. "Study on Critical Drawdown Pressure of Sanding for Wellbore of Underground Gas Storage in a Depleted Gas Reservoir," Energies, MDPI, vol. 15(16), pages 1-18, August.
    2. Jianhui Wu & Jingen Chen & Chunyan Zou & Xiaoxiao Li, 2022. "Accident Modeling and Analysis of Nuclear Reactors," Energies, MDPI, vol. 15(16), pages 1-3, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3605-:d:576704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.