IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1038-d325399.html
   My bibliography  Save this article

Assessment of Grid-Connected Wind Turbines with an Inertia Response by Considering Internal Dynamics

Author

Listed:
  • Callum Henderson

    (Power Electronics, Drive and Energy Conversion Group, Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow G1 1XW, UK)

  • Dimitrios Vozikis

    (Power Electronics, Drive and Energy Conversion Group, Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow G1 1XW, UK)

  • Derrick Holliday

    (Power Electronics, Drive and Energy Conversion Group, Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow G1 1XW, UK)

  • Xiaoyan Bian

    (Electrical Engineering College, Shanghai University of Electric Power, Shanghai 200090, China)

  • Agustí Egea-Àlvarez

    (Power Electronics, Drive and Energy Conversion Group, Electronic and Electrical Engineering Department, University of Strathclyde, Glasgow G1 1XW, UK)

Abstract

This paper presents a small-signal analysis of different grid side controllers for full power converter wind turbines with inertia response capability. In real wind turbines, the DC link controller, the drivetrain damping controller and the inertial response might present contradictory control actions in a close bandwidth range. This situation might lead to reduced control performance, increased component stress and non-compliance of connection agreements. The paper presents an analysis of the internal wind turbine dynamics by considering different grid-side converter control topologies: standard current control used in the wind industry, standard current control with inertia emulation capabilities and virtual synchronous machines. Comments are made on the similarities between each topology and the negative effects and limits, and possible remedies are discussed. Finally, the conclusion poses that the inclusion of a DC link voltage controller reduces the ability of a converter to respond to external frequency events without energy storage. The degradation increases with the DC link voltage control speed.

Suggested Citation

  • Callum Henderson & Dimitrios Vozikis & Derrick Holliday & Xiaoyan Bian & Agustí Egea-Àlvarez, 2020. "Assessment of Grid-Connected Wind Turbines with an Inertia Response by Considering Internal Dynamics," Energies, MDPI, vol. 13(5), pages 1-28, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1038-:d:325399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor F. Mendes & Frederico F. Matos & Silas Y. Liu & Allan F. Cupertino & Heverton A. Pereira & Clodualdo V. De Sousa, 2016. "Low Voltage Ride-Through Capability Solutions for Permanent Magnet Synchronous Wind Generators," Energies, MDPI, vol. 9(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hector Beltran & Sam Harrison & Agustí Egea-Àlvarez & Lie Xu, 2020. "Techno-Economic Assessment of Energy Storage Technologies for Inertia Response and Frequency Support from Wind Farms," Energies, MDPI, vol. 13(13), pages 1-21, July.
    2. Dimitrios Vozikis & Fahad Alsokhiry & Grain Philip Adam & Yusuf Al-Turki, 2020. "Novel Enhanced Modular Multilevel Converter for High-Voltage Direct Current Transmission Systems," Energies, MDPI, vol. 13(9), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borzou Yousefi & Soodabeh Soleymani & Babak Mozafari & Seid Asghar Gholamian, 2017. "Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages," Energies, MDPI, vol. 10(10), pages 1-21, September.
    2. Mohamed Abdelrahem & Ralph Kennel, 2016. "Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.
    3. Mojtaba Nasiri & Saleh Mobayen & Behdad Faridpak & Afef Fekih & Arthur Chang, 2020. "Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies," Energies, MDPI, vol. 13(24), pages 1-18, December.
    4. Cheng Zhong & Lai Wei & Gangui Yan, 2017. "Low Voltage Ride-through Scheme of the PMSG Wind Power System Based on Coordinated Instantaneous Active Power Control," Energies, MDPI, vol. 10(7), pages 1-20, July.
    5. Ernest F. Morgan & Omar Abdel-Rahim & Tamer F. Megahed & Junya Suehiro & Sobhy M. Abdelkader, 2022. "Fault Ride-Through Techniques for Permanent Magnet Synchronous Generator Wind Turbines (PMSG-WTGs): A Systematic Literature Review," Energies, MDPI, vol. 15(23), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1038-:d:325399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.