IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6713-d465075.html
   My bibliography  Save this article

Using the Analysis of the Gases Dissolved in Oil in Diagnosis of Transformer Bushings with Paper-Oil Insulation—A Case Study

Author

Listed:
  • Tomasz Piotrowski

    (Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland)

  • Pawel Rozga

    (Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland)

  • Ryszard Kozak

    (Zrew Transformers S.A., Rokicinska 144, 92-412 Lodz, Poland)

  • Zbigniew Szymanski

    (Energopomiar-Elektryka, Swietokrzyska 2, 44-100 Gliwice, Poland)

Abstract

The article describes a case study when the voltage collapse during lightning impulse tests of new power transformers was noticed and when the repeated tests finished with a positive result. The step-by-step process of reaching the conclusion on the basis of dissolved gas analysis (DGA) as a key method of the investigations was presented. The considerations on the possible source of the analysis showed that the Duval triangle method, used in the analysis of the concentration of gases dissolved in oil samples taken from bushings, more reliably and unambiguously than the ratio method recommended in the IEC 60599 Standard, indicated a phenomenon which was identified in the insulation structure of bushings analyzed. Additionally, the results from DGA were found to be consistent with an internal inspection of bushings, which showed a visible trace of discharge on the inside part of the epoxy housing, as a result of the lightning induced breakdown.

Suggested Citation

  • Tomasz Piotrowski & Pawel Rozga & Ryszard Kozak & Zbigniew Szymanski, 2020. "Using the Analysis of the Gases Dissolved in Oil in Diagnosis of Transformer Bushings with Paper-Oil Insulation—A Case Study," Energies, MDPI, vol. 13(24), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6713-:d:465075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luiz Cheim & Michel Duval & Saad Haider, 2020. "Combined Duval Pentagons: A Simplified Approach," Energies, MDPI, vol. 13(11), pages 1-12, June.
    2. George Kimani Irungu & Aloys Oriedi Akumu, 2020. "Application of Dissolved Gas Analysis in Assessing Degree of Healthiness or Faultiness with Fault Identification in Oil-Immersed Equipment," Energies, MDPI, vol. 13(18), pages 1-24, September.
    3. Tomasz Piotrowski & Pawel Rozga & Ryszard Kozak, 2019. "Comparative Analysis of the Results of Diagnostic Measurements with an Internal Inspection of Oil-Filled Power Transformers," Energies, MDPI, vol. 12(11), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ancuța-Mihaela Aciu & Claudiu-Ionel Nicola & Marcel Nicola & Maria-Cristina Nițu, 2021. "Complementary Analysis for DGA Based on Duval Methods and Furan Compounds Using Artificial Neural Networks," Energies, MDPI, vol. 14(3), pages 1-22, January.
    2. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    3. George Kimani Irungu & Aloys Oriedi Akumu, 2020. "Application of Dissolved Gas Analysis in Assessing Degree of Healthiness or Faultiness with Fault Identification in Oil-Immersed Equipment," Energies, MDPI, vol. 13(18), pages 1-24, September.
    4. Maciej Kuniewski, 2020. "FRA Diagnostics Measurement of Winding Deformation in Model Single-Phase Transformers Made with Silicon-Steel, Amorphous and Nanocrystalline Magnetic Cores," Energies, MDPI, vol. 13(10), pages 1-23, May.
    5. Patryk Bohatyrewicz & Andrzej Mrozik, 2021. "The Analysis of Power Transformer Population Working in Different Operating Conditions with the Use of Health Index," Energies, MDPI, vol. 14(16), pages 1-14, August.
    6. Michał Kozioł, 2020. "Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids," Energies, MDPI, vol. 13(9), pages 1-9, May.
    7. Firas B. Ismail & Maisarah Mazwan & Hussein Al-Faiz & Marayati Marsadek & Hasril Hasini & Ammar Al-Bazi & Young Zaidey Yang Ghazali, 2022. "An Offline and Online Approach to the OLTC Condition Monitoring: A Review," Energies, MDPI, vol. 15(17), pages 1-18, September.
    8. Youcef Benmahamed & Omar Kherif & Madjid Teguar & Ahmed Boubakeur & Sherif S. M. Ghoneim, 2021. "Accuracy Improvement of Transformer Faults Diagnostic Based on DGA Data Using SVM-BA Classifier," Energies, MDPI, vol. 14(10), pages 1-17, May.
    9. Michel Duval & Constantin Ene, 2021. "Identification of Stray Gassing of Dodecylbenzene in Bushings," Energies, MDPI, vol. 14(9), pages 1-7, April.
    10. Pawel Zukowski & Przemyslaw Rogalski & Tomasz N. Koltunowicz & Konrad Kierczynski & Vitalii Bondariev, 2020. "Precise Measurements of the Temperature-Frequency Dependence of the Conductivity of Cellulose—Insulating Oil—Water Nanoparticles Composite," Energies, MDPI, vol. 14(1), pages 1-26, December.
    11. Eugeniusz Kornatowski & Szymon Banaszak, 2019. "Frequency Response Quality Index for Assessing the Mechanical Condition of Transformer Windings," Energies, MDPI, vol. 13(1), pages 1-15, December.
    12. El-Sayed M. El-kenawy & Fahad Albalawi & Sayed A. Ward & Sherif S. M. Ghoneim & Marwa M. Eid & Abdelaziz A. Abdelhamid & Nadjem Bailek & Abdelhameed Ibrahim, 2022. "Feature Selection and Classification of Transformer Faults Based on Novel Meta-Heuristic Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-28, September.
    13. James Dukarm & Zachary Draper & Tomasz Piotrowski, 2020. "Diagnostic Simplexes for Dissolved-Gas Analysis," Energies, MDPI, vol. 13(23), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6713-:d:465075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.