IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6149-d449727.html
   My bibliography  Save this article

Impact of Current Density and Cooling on the Weight Balance of Electrical Propulsion Drives for Aviation

Author

Listed:
  • Jan Hoffmann

    (Cluster of Excellence SE²A—Sustainable and Energy-Efficient Aviation, Technische Universität Braunschweig, 38108 Braunschweig, Germany)

  • Wolf-Rüdiger Canders

    (Institut für Elektrische Maschinen, Antriebe und Bahnen, Technische Universität Braunschweig, 38106 Braunschweig, Germany)

  • Markus Henke

    (Cluster of Excellence SE²A—Sustainable and Energy-Efficient Aviation, Technische Universität Braunschweig, 38108 Braunschweig, Germany
    Institut für Elektrische Maschinen, Antriebe und Bahnen, Technische Universität Braunschweig, 38106 Braunschweig, Germany)

Abstract

Through applying an exemplary design study, the dependencies between current density, temperatures, and weight in an electrical drive system for a small range aircraft with conventional electrical fan or propeller drives are evaluated. This study applies a combined numerical (Finite Element Method FEM) and analytical approach to the machine design, calculation of temperatures, and cooling system design (cooler, pumps, piping). A design scenario was defined using start and climb flight in a warm tropical surrounding as the worst load case. The design has to move between two fixed temperature limits: The maximum allowable temperature in the machine insulation and the ambient temperature. The implemented method facilitates a comparatively fast-medium depth design of the drive system. The derived results show, in fact, a minimum of weight at a certain current density, which is one of the key interests for the designers of the electrical machine. The main influences on this minimum are the temperature drops in the machine, the heat transfer to the cooling fluid, the heat transfer to the cooler wall, and the remaining heat rejection to the ambient. Method and results are transferable to other types of airplanes with different ratings.

Suggested Citation

  • Jan Hoffmann & Wolf-Rüdiger Canders & Markus Henke, 2020. "Impact of Current Density and Cooling on the Weight Balance of Electrical Propulsion Drives for Aviation," Energies, MDPI, vol. 13(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6149-:d:449727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David C. Deisenroth & Michael Ohadi, 2019. "Thermal Management of High-Power Density Electric Motors for Electrification of Aviation and Beyond," Energies, MDPI, vol. 12(19), pages 1-18, September.
    2. Wolf-Rüdiger Canders & Jan Hoffmann & Markus Henke, 2019. "Cooling Technologies for High Power Density Electrical Machines for Aviation Applications," Energies, MDPI, vol. 12(23), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zi-Qiang Zhu & Dawei Liang, 2022. "Perspective of Thermal Analysis and Management for Permanent Magnet Machines, with Particular Reference to Hotspot Temperatures," Energies, MDPI, vol. 15(21), pages 1-51, November.
    2. Diego Troncon & Luigi Alberti, 2020. "Case of Study of the Electrification of a Tractor: Electric Motor Performance Requirements and Design," Energies, MDPI, vol. 13(9), pages 1-15, May.
    3. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    4. Xinyu Chang & Koji Fujita & Hiroki Nagai, 2022. "Numerical Analysis of Wick-Type Two-Phase Mechanically Pumped Fluid Loop for Thermal Control of Electric Aircraft Motors," Energies, MDPI, vol. 15(5), pages 1-15, February.
    5. Ralf Johannes Keuter & Florian Niebuhr & Marius Nozinski & Eike Krüger & Stephan Kabelac & Bernd Ponick, 2023. "Design of a Direct-Liquid-Cooled Motor and Operation Strategy for the Cooling System," Energies, MDPI, vol. 16(14), pages 1-14, July.
    6. Wolf-Rüdiger Canders & Jan Hoffmann & Markus Henke, 2019. "Cooling Technologies for High Power Density Electrical Machines for Aviation Applications," Energies, MDPI, vol. 12(23), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6149-:d:449727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.