IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6099-d448730.html
   My bibliography  Save this article

The Effect of CO 2 Concentration on Children’s Well-Being during the Process of Learning

Author

Listed:
  • Snezana Bogdanovica

    (Daugavpils Secondary School Nr 9, LV-5401 Daugavpils, Latvia)

  • Jurgis Zemitis

    (Heat, Gas and Water Technology Institute, Riga Technical University, LV-1048 Riga, Latvia)

  • Raimonds Bogdanovics

    (Heat, Gas and Water Technology Institute, Riga Technical University, LV-1048 Riga, Latvia)

Abstract

There are more than 200 thousand pupils in Latvia. Most of them are still learning in non-renovated classrooms without proper mechanical ventilation. The classrooms are often ventilated only during the breaks by opening windows. This can lead to increased CO 2 levels and reduced mental performance. To test how CO 2 concentration in classrooms influences student attention level and their ability to perform mental tasks, the students had to complete a short test at the start and the end of the class. At the same time CO 2 concentration, temperature and relative humidity were logged. In addition, an anonymous survey on how the pupils felt regarding the overall indoor environmental quality (IEQ) in the classroom, their thermal sensation, are they fatigued, any difficulty concentrating and if they have headaches during the lesson performed. The measurements were performed in a Secondary School in Daugavpils, Latvia. The analysis of results shows that existing 10 min breaks are not enough to fully ventilate the classroom, and they must be increased to at least 15 min. At the same time, 30 min breaks can be reduced to 20 min. The correlation between CO 2 concentration and test results of pupils’ performance test results is noticeable but not definitive. It indicates that at increased CO 2 levels the performance lowers—when the concentration of CO 2 corresponds only to the Category 3 norm, the lowest results are achieved while the best results are when the CO 2 concentration level corresponds to Category 1. To improve the study, observations of CO 2 concentrations must be extended throughout the school year, as well as measurements in other classrooms in the school should be made.

Suggested Citation

  • Snezana Bogdanovica & Jurgis Zemitis & Raimonds Bogdanovics, 2020. "The Effect of CO 2 Concentration on Children’s Well-Being during the Process of Learning," Energies, MDPI, vol. 13(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6099-:d:448730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jovanović, Marina & Vučićević, Biljana & Turanjanin, Valentina & Živković, Marija & Spasojević, Vuk, 2014. "Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia," Energy, Elsevier, vol. 77(C), pages 42-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Lis & Anna Lis, 2021. "The Required Amount of Ventilation Air for the Classroom and the Possibility of Air Infiltration through the Windows," Energies, MDPI, vol. 14(22), pages 1-22, November.
    2. Guillermo Efren Ovando-Chacon & Sandy Luz Ovando-Chacon & Abelardo Rodríguez-León & Mario Díaz-González, 2023. "Numerical Study of Indoor Air Quality in a University Professor’s Office," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    3. Mateja Dovjak & Ožbej Vene & Janja Vaupotič, 2022. "Analysis of Ventilation Efficiency as Simultaneous Control of Radon and Carbon Dioxide Levels in Indoor Air Applying Transient Modelling," IJERPH, MDPI, vol. 19(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saqib Javed & Ivar Rognhaug Ørnes & Tor Helge Dokka & Maria Myrup & Sverre Bjørn Holøs, 2021. "Evaluating the Use of Displacement Ventilation for Providing Space Heating in Unoccupied Periods Using Laboratory Experiments, Field Tests and Numerical Simulations," Energies, MDPI, vol. 14(4), pages 1-33, February.
    2. Weixun Lv & Yan Wu & Jianbin Zang, 2021. "A Review on the Dispersion and Distribution Characteristics of Pollutants in Street Canyons and Improvement Measures," Energies, MDPI, vol. 14(19), pages 1-21, September.
    3. Mei Wu & Guangwei Zhang & Liping Wang & Xiaoping Liu & Zhengwei Wu, 2022. "Influencing Factors on Airflow and Pollutant Dispersion around Buildings under the Combined Effect of Wind and Buoyancy—A Review," IJERPH, MDPI, vol. 19(19), pages 1-19, October.
    4. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    5. Tureková, Ivana & Marková, Iveta & Sventeková, Eva & Harangózo, Jozef, 2022. "Evaluation of microclimatic conditions during the teaching process in selected school premises. Slovak case study," Energy, Elsevier, vol. 239(PD).
    6. Juliana P. Sá & Pedro T. B. S. Branco & Maria C. M. Alvim-Ferraz & Fernando G. Martins & Sofia I. V. Sousa, 2017. "Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools," IJERPH, MDPI, vol. 14(6), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6099-:d:448730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.