IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4081-d395574.html
   My bibliography  Save this article

Generalized Fault-Location Scheme for All-Parallel AT Electric Railway System

Author

Listed:
  • Zhengqing Han

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Shuai Li

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Shuping Liu

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Shibin Gao

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China)

Abstract

The existing fault location methods for all-parallel autotransformer railway systems (AARS) have limitations because they are generally designed for several given feeding conditions. In alternate feeding conditions, the existing fault location methods do not work well and may have large errors. To solve this problem, we have proposed a generalized fault location scheme for AARS in this paper. After analyzing the fault characteristics of AARS, we classified the feeding conditions of the faulted section of AARS into three types and introduced the corresponding fault location methods. In order to identify the faulted section and its feeding condition, we first formed a switch state matrix based on the adjacency matrix and mapped the fault current distribution into a current state matrix, then we unified the two matrices into a fault state matrix to reflect the fault state of the AARS. Finally, a generalized fault location scheme was proposed based on a fault state matrix. The proposed scheme effectively eliminates the negative influence of feeding conditions on the fault location, and it can identify the fault type and locate faults in different feeding conditions. Several simulation cases verified the effectiveness of the proposed scheme.

Suggested Citation

  • Zhengqing Han & Shuai Li & Shuping Liu & Shibin Gao, 2020. "Generalized Fault-Location Scheme for All-Parallel AT Electric Railway System," Energies, MDPI, vol. 13(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4081-:d:395574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yimin Zhou & Guoqing Xu & Yanfeng Chen, 2012. "Fault Location in Power Electrical Traction Line System," Energies, MDPI, vol. 5(12), pages 1-17, November.
    2. Jesús Serrano & Carlos A. Platero & Máximo López-Toledo & Ricardo Granizo, 2017. "A New Method of Ground Fault Location in 2 × 25 kV Railway Power Supply Systems," Energies, MDPI, vol. 10(3), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuyu Guo & Shihong Miao & Haipeng Zhao & Haoran Yin & Zixin Wang, 2020. "A Novel Fault Location Method of a 35-kV High-Reliability Distribution Network Using Wavelet Filter-S Transform," Energies, MDPI, vol. 13(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos A. Platero & Jesús Serrano & Máximo López-Toledo & Ricardo Granizo, 2018. "Influence of High-Speed Train Power Consumption and Arc Fault Resistances on a Novel Ground Fault Location Method for 2 × 25 kV Railway Power Supply Systems," Energies, MDPI, vol. 11(6), pages 1-20, June.
    2. Ricardo Granizo Arrabé & Carlos Antonio Platero Gaona & Fernando Álvarez Gómez & Emilio Rebollo López, 2016. "Novel Auto-Reclosing Blocking Method for Combined Overhead-Cable Lines in Power Networks," Energies, MDPI, vol. 9(11), pages 1-20, November.
    3. Jesus Serrano & Carlos A. Platero & Maximo López-Toledo & Ricardo Granizo, 2015. "A Novel Ground Fault Identification Method for 2 × 5 kV Railway Power Supply Systems," Energies, MDPI, vol. 8(7), pages 1-20, July.
    4. Jesús Serrano & Carlos A. Platero & Máximo López-Toledo & Ricardo Granizo, 2017. "A New Method of Ground Fault Location in 2 × 25 kV Railway Power Supply Systems," Energies, MDPI, vol. 10(3), pages 1-14, March.
    5. Guoqing Xu & Yimin Zhou & Yanfeng Chen, 2013. "Model-Based Fault Location with Frequency Domain for Power Traction System," Energies, MDPI, vol. 6(7), pages 1-18, June.
    6. Pulin Cao & Hongchun Shu & Bo Yang & Na An & Dalin Qiu & Weiye Teng & Jun Dong, 2018. "Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China," Energies, MDPI, vol. 11(3), pages 1-22, March.
    7. Shuai Wang & Minwu Chen & Qunzhan Li & Wenxun Huang & Bo Wu, 2018. "A New Hybrid Fault Identification Method Based on Multiterminals Synchronous Measure Information for All Parallel at Traction Power Supply System," Energies, MDPI, vol. 11(10), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4081-:d:395574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.